
1

Anna: A KVS For Any Scale
Chenggang Wu #1, Jose M. Faleiro #2, Yihan Lin ∗3, Joseph M. Hellerstein #4

UC Berkeley
USA

1 cgwu@berkeley.edu
2 jmfaleiro@berkeley.edu

4 hellerstein@berkeley.edu
∗ Columbia University

USA
3 yihan.lin@columbia.edu

Abstract—Modern cloud providers offer dense hardware with
multiple cores and large memories, hosted in global platforms.
This raises the challenge of implementing high-performance
software systems that can effectively scale from a single core to
multicore to the globe. Conventional wisdom says that software
designed for one scale point needs to be rewritten when scaling
up by 10−100× [1]. In contrast, we explore how a system can be
architected to scale across many orders of magnitude by design.

We explore this challenge in the context of a new key-
value store system called Anna: a partitioned, multi-mastered
system that achieves high performance and elasticity via wait-
free execution and coordination-free consistency. Our design rests
on a simple architecture of coordination-free actors that perform
state update via merge of lattice-based composite data structures.
We demonstrate that a wide variety of consistency models can
be elegantly implemented in this architecture with unprecedented
consistency, smooth fine-grained elasticity, and performance that
far exceeds the state of the art.

I. INTRODUCTION

High performance key-value storage (KVS) systems are the
backbone of many large-scale applications ranging from retail
shopping carts to machine learning parameter servers. Many
KVS systems are designed for large-scale and even globally-
distributed usage (e.g., [2]–[4]); others are designed for high-
performance single-machine settings (e.g., [5], [6]). In recent
years, these distinct hardware targets have begun to converge
in the cloud. For example, Amazon now offers EC2 instances
with up to 64 physical cores, while continuing to provide the
ability to scale across machines, racks and the globe.

Given the convergence of dense hardware and the globe-
spanning cloud, we set out to design a KVS that can run well at
any scale: providing excellent performance on a single multi-
core machine, while scaling up elastically to geo-distributed
cloud deployment. In addition to wide-ranging architectural
flexibility, we wanted to provide a wide range of consistency
semantics as well, to support a variety of application needs.

In order to achieve these goals, we found that four design
requirements emerged naturally. The first two are traditional
aspects of global-scale data systems. To ensure data scaling,
we assumed from the outset that we need to partition (shard)
the key space, not only across nodes at cloud scale but
also across cores for high performance. Second, to enable
workload scaling, we need to employ multi-master replication

to concurrently serve puts and gets against a single key from
multiple threads.

The next two design requirements followed from our ambi-
tions for performance and generality. To achieve maximum
hardware utilization and performance within a multi-core
machine, our third requirement was to guarantee wait-free
execution, meaning that each thread is always doing useful
work (serving requests), and never waiting for other threads for
reasons of consistency or semantics. To that end, coordination
techniques such as locking, consensus protocols or even “lock-
free” retries [7] need to be avoided. Finally, to support a
wide range of application semantics without compromising
our other goals, we require a unified implementation for a
wide range of coordination-free consistency models [8].

Given these design constraints, we developed a system
called Anna1, which meets our performance goals at multiple
scales and consistency levels. The architecture of Anna is
based on a simple design pattern of coordination-free actors
(Section V), each having private memory and a thread of exe-
cution mapped to a single core. Actors communicate explicitly
via messaging, be it across nodes (via a network) or within
a multi-core machine (via message queues [10]). To ensure
wait-free execution, Anna actors never coordinate; they only
communicate with each other to lazily exchange updates, or
repartition state. Finally, as discussed in Section VI, Anna
provides replica consistency in a new way: by using lattice
composition to implement recent research in coordination-free
consistency. This design pattern is uniform across threads,
machines, and data-centers, which leads to a system that is
simple and easy to reconfigure dynamically.

This paper describes the design and implementation of
Anna, providing a set of architectural and experimental lessons
for designing across scales:

• Coordination-free Actors: We confirm that the
coordination-free actor model provides excellent
performance from individual multi-core machines up
to widely distributed settings, besting state-of-the-art
lock-free shared memory implementations while scaling
smoothly and making repartitioning for elasticity
extremely responsive.

1The tiny Anna’s hummingbird, a native of California, is the fastest animal
on earth relative to its size [9].

2

• Lattice-Powered, Coordination-Free Consistency: We
show that the full range of coordination-free consistency
models taxonomized by Bailis, et al. [8] can be elegantly
implemented in the framework of distributed lattices [11],
[12], using only very simple structures in a compositional
fashion. The resulting consistency code is small and
modular: each of our consistency levels differs by at most
60 lines of C++ code from our baseline.

• Cross-Scale Validation: We perform comparison against
popular KVSs designed for different scale points: Re-
dis [6] for single-node settings, and Apache Cassandra [3]
for geo-replicated settings. We see that Anna’s perfor-
mance is competitive at both scales while offering a wider
range of consistency levels.

II. RELATED WORK

Anna is differentiated from the many KVS designs in
the literature in its assumptions and hence in its design.
Anna was inspired by a variety of work in distributed and
parallel programming, distributed and parallel databases, and
distributed consistency.

A. Programming Models

The Coordination-free actor model can be viewed as an
extension to distributed event-loop programming, notably He-
witt’s Actor model [13], more recently popularized in Erlang
and Akka. Anna follows the Actor spirit of independent
local agents communicating asynchronously, but differs from
Actors in its use of monotonic programming in the style of
Bloom [14] and CRDTs [11], providing a formal foundation
for reasoning about distributed consistency. Anna’s actors also
bear some resemblance to SEDA [15], but SEDA focuses on
preemptable thread pools and message queues, whereas Anna’s
actors target a thread-per-core model with lattices to ensure
consistency and performance.

Recent systems, such as ReactDB [16] and Orleans [17] also
explore Actor-oriented programming models for distributed
data. In both those cases, the Actor model is extended to
provide a higher level abstraction as part of a novel program-
ming paradigm for users. By contrast, Anna does not attempt
to change user APIs or programming models; it exposes a
simple key/value API to external applications. Meanwhile,
those systems do not explore the use of lattice-oriented actors.

B. Key-value Stores

Figure I shows a taxonomy of existing KVS systems based
on the scale at which they are designed to operate, the memory
model, and the per-key as well as multi-key consistency levels
supported. The remainder of this section discusses the state
of the art in KVS systems in the context of the four design
requirements (Section I) for building any-scale KVS.

1) Single-server storage systems: Most single-server KVS
systems today are designed to efficiently exploit multi-core
parallelism. These multi-core-optimized KVS systems typi-
cally guarantee that reads and writes against a single key are
linearizable.

Shared memory is the architecture of choice for most single-
server KVS systems. Masstree [18] and Bw-tree [19] employ a
shared-memory design. Furthermore, the single-server mecha-
nisms within distributed KVS systems, such as memcached [5]
and MongoDB [4], also employ a shared-memory architecture
per node. Shared-memory architectures use synchronization
mechanisms such as latches or atomic instructions to protect
the integrity of shared data-structures, which can significantly
inhibit multi-core scalability under contention [7].

PALM [20] and MICA [21]2 each employ a partitioned
architecture, assigning non-overlapping shards of key-value
pairs to each system thread. KVS operations can therefore be
performed without any synchronization because they are race-
free by default. However, threads in partitioned systems (with
single-master request handling) are prone to under-utilization
if a subset of shards receive a disproportionate fraction of
requests due to workload skew. To address workload skew,
both PALM and MICA make selective use of shared-memory
design principles. For instance, MICA processes only writes
in a partitioned fashion, but allows any thread to process reads
against a particular key.

Redis [6] uses a single-threaded model. Redis permits
operations on multiple keys in a single request and guarantees
serializability. While single-threaded execution avoids shared-
memory synchronization overheads, it cannot take any advan-
tage of multi-core parallelism.

The systems above are carefully designed to execute effi-
ciently on a single server. Except for Redis, they all use shared-
memory accesses; some directly employ the shared-memory
architecture, while others employ a partitioned (“shared-
nothing”) architecture but selectively exploit shared memory
to ameliorate skew. The designs of these systems are therefore
specific to a single server, and cannot be generalized to a
distributed system. Moreover, the shared-memory model is at
odds with wait-free execution (Section IV), and therefore does
not meet our performance requirement for any-scale KVS.

Moreover, as noted in Figure I, prior single-node KVS
systems invariably provide only a single form of consistency;
typically either linearizability or serializability. Furthermore,
with the exception of Redis, which is single-threaded, none
of the single-node KVS systems provide any consistency
guarantees for multi-key operations for groups of keys. Hence,
these systems choose a different design point than we explore:
they offer strong consistency at the expense of performance
and scalability.

2) Distributed KVS: As shown in Figure I, the majority of
distributed KVS systems are not designed to run on a single
multi-core machine, and it is unclear how they exploit multi-
core parallelism (if at all). The exceptions are H-Store [22] and
ScyllaDB [23]. Within a single machine, these systems parti-
tion the key-value index across threads, which communicate
via explicit message-passing. However, as discussed earlier,
partitioned systems with single-master request handling cannot
scale well under skewed workload.

2Note that MICA is a key-value cache, and can hence evict key-
value pairs from an index in order to bound its memory footprint for
improved cache-locality.

3

System Scale Memory Model Per-Key Consistency Multi-key Consistency
Masstree M SM Linearizable None
Bw-tree M SM Linearizable None
PALM M SM Linearizable None
MICA M SM Linearizable None
Redis S N/A Linearizable Serializable

COPS, Bolt-on D MP Causal Causal
Bayou D MP Eventual, Monotonic Reads/Writes, Read Your Writes Eventual

Dynamo D MP Linearizable, Eventual None
Cassandra D MP Linearizable, Eventual None
PNUTS D MP Linearizable Writes, Monotonic Reads None

CouchDB D MP Eventual None
Voldemort D MP Linearizable, Eventual None

HBase D MP Linearizable None
Riak D MP Eventual None

DocumentDB D MP Eventual, Session, Bounded Staleness, Linearizability None
Memcached M & D SM & MP Linearizable None
MongoDB M & D SM & MP Linearizable None

H-Store M & D MP Linearizable Serializable
ScyllaDB M & D MP Linearizable, Eventual None

Anna M & D MP Eventual, Causal, Item Cut, Writes Follow Reads
Monotonic Reads/Writes, Read Your Writes, PRAM Read Committed, Read Uncommitted

TABLE I: Taxonomy of existing KVS systems. The scale column indicates whether a system is designed to run on a Single
core (S), a multi-core machine (M), in a distributed setting (D), or a combination (M & D). The memory model column shows
whether a system uses shared-memory model (SM), explicit message passing (MP), or both (SM & MP).

In terms of consistency, most distributed KVSs support a
single, relaxed consistency level. COPS [24] and Bolt-on [25]
guarantee causal consistency. MongoDB [4], HBase [26], and
memcached [5] guarantee linearizable reads and writes against
individual KVS objects. PNUTS [27] guarantees that writes
are linearizable, and reads observe a monotonically increasing
set of updates to key-value pairs.

Bayou [28] provides eventually consistent multi-key op-
erations, and supports application-specific conflict detection
and resolution mechanisms. Cassandra [3] and Dynamo [2]
use quorum-based replication to provide different consistency
levels. Applications can fix read and write quorum sizes
to obtain either linearizable or eventually consistent single-
key operations. In addition, both Cassandra and Dynamo use
vector clocks to detect conflicting updates to a key, and permit
application-specific conflict resolution policies. As noted in
Figure I, Azure DocumentDB [29] supports multiple single-
key consistency levels.

We note that the majority of distributed KVS systems do not
provide any multi-key guarantees for arbitrary groups of keys.
Some systems, such as HBase, provide limited support for
transactions on single shard, but do not provide arbitrary multi-
key guarantees. COPS and Bolt-on provide causally consistent
replication. Bayou supports arbitrary multi-key operations but
requires that each server maintains a full copy of the entire
KVS. H-Store supports serializability by performing two-
phase commit. However, achieving this level of consistency
requires coordination and waiting amongst threads and ma-
chines, leading to limited scalability.

State machine replication [30] (SMR) is the de facto stan-
dard for maintaining strong consistency in replicated sys-
tems. SMR maintains consistency by enforcing that replicas
deterministically process requests according to a total order
(via a consensus protocol such as Paxos [31] or Raft [32]).
Totally ordered request processing requires waiting for global

consensus at each step, and thus fundamentally limits the
throughput of each replica-set. Anna, in contrast, uses lattice
composition to maintain the consistency of replicated state.
Lattices are resilient to message re-ordering and duplication,
allowing Anna to employ asynchronous multi-master replica-
tion without need for any waiting.

III. LATTICES

A central component of the design of Anna is its use of
lattice composition for storing and asynchronously merging
state. Lattices prove important to Anna for two reasons.

First, lattices are insensitive to the order in which they merge
updates. This means that they can guarantee consistency across
replicas even if the actors managing those replicas receive
updates in different orders. Section V describes Anna’s use
of lattices for multi-core and wide-area scalability in detail.

Second, we will see in Section VI that simple lat-
tice building blocks can be composed to achieve a range
of coordination-free consistency levels. The coordination-
freedom of these levels was established in prior work [8], and
while they cannot include the strongest forms of consistency
such as linearizability or serializability, they include relatively
strong levels including causality and read-committed transac-
tions. Our contribution is architectural: Anna shows that these
many consistency levels can all be expressed and implemented
using a unified lattice-based foundation. Section VI describes
these consistency levels and their implementation in detail.

To clarify terminology, we pause to review the lattice
formalisms used in settings like convergent and commutative
replicated data-types (CRDTs) [11], and the BloomL dis-
tributed programming language [12].

A bounded join semilattice consists of a domain S (the
set of possible states), a binary operator t, and a “bottom”
value ⊥. The operator t is called the “least upper bound” and
satisfies the following properties:

4

Commutativity: t(a, b) = t(b, a) ∀a, b ∈ S
Associativity: t(t(a, b), c) = t(a,t(b, c)) ∀a, b, c ∈ S
Idempotence: t(a, a) = a ∀a ∈ S

Together, we refer to these three properties via the acronym
ACI. The t operator induces a partial order between elements
of S. For any two elements a, b in S, if t(a, b) = b, then
we say that b’s order is higher than a, i.e. a ≺ b. The bottom
value ⊥ is defined such that ∀a ∈ S, t(a,⊥) = a; hence
it is the smallest element in S. For brevity, in this paper we
use “lattice” to refer to “bounded join semilattice” and “merge
function” to refer to “least upper bound”.

IV. DISTRIBUTED STATE MODEL

This section describes Anna’s representation and manage-
ment of state across actors. Each actor maintains state using
lattices, but we observe that this is not sufficient to achieve
high performance. As we discuss, the potential advantages
of lattices can be lost in the high cost of synchronization
in shared-memory key-value store architectures. Accordingly,
Anna eschews shared-memory state model for one based on
asynchronous message-passing.

A. Limitations of shared-memory

The vast majority of multi-core key-value stores are imple-
mented as shared-memory systems, in which the entirety of
the system’s state is shared across the threads of a server: each
thread is allowed to read or write any part of the state. Con-
flicting accesess to this state, at the level of reads and writes
to memory words, need to be synchronized for correctness.
Synchronization prevents concurrent writes from corrupting
state, and ensures that reads do not observe the partial effects
of in-progress writes. This synchronization typically occurs
in the form of locks or lock-free algorithms, and is widely
acknowledged as one of the biggest limiters of multi-core
scalability. Both locks and lock-free algorithms can severely
limit scalability under contention due to the overhead of cache-
coherence protocols, which is proportional to the number of
physical cores contending on a word in memory [7], [33].
For instance, even a single word in memory incremented via
an atomic fetch-and-add can be a scalability bottleneck
in multi-version database systems that assign transactions
monotonically increasing timestamps [34].

Lattices do not change the above discussion; any shared-
memory lattice implementation is subject to the same synchro-
nization overheads. On receiving update client requests, actors
must update a lattice via its merge function. Although these up-
dates commute at the abstraction of the merge function, threads
must synchronize their access to a lattice’s in-memory state to
avoid corrupting this in-memory state due to concurrent writes.
Thus, while lattices’ ACI properties potentially allow a system
to scale regardless of workload, a shared-memory architecture
fundamentally limits this potential due to the its reliance on
multi-core synchronization mechanisms.

B. Message-passing

In contrast to using shared memory, a message-passing
architecture consists of a collection of actors, each running

on a separate CPU core. Each actor maintains private state
that is inaccessible to other actors, and runs a tight loop in
which it continuously processes client requests and inter-core
messages from an input queue. Because an actor can update
only its own local state, concurrent modification of shared
memory locations is eliminated, which in turn eliminates the
need for synchronization.

A message-passing system has two alternatives for manag-
ing each key; single-master and multi-master replication.

In single-master replication, each key is assigned to a single
actor. This prevents concurrent modifications of the key’s
value, which in turn guarantees that it will always remain
consistent. However, this limits the rate at which the key can
be updated to the maximum update rate of a single actor.

In multi-master replication, a key is replicated on multiple
actors, each of which can read and update its own local copy.
To update a key’s value, actors can either engage in coordi-
nation to control the global order of updates, or can leave
updates uncoordinated. Coordination occurs on the critical
path of every request, and achieves the effect of totally-ordered
broadcast. Although multiple actors can process updates, to-
tally ordered broadcast ensures that every actor processes the
same set of updates in the same order, which is semantically
equivalent to single-master replication. In a coordination-free
approach, on the other hand, each actor can process a request
locally without introducing any inter-actor communication on
the critical path. Updates are periodically communicated to
other actors when a timer is triggered or when the actor
experiences a reduction in request load.

Unlike synchronous multi-master and single-master repli-
cation, a coordination-free multi-master scheme could lead
to inconsistencies between replicas, because replicas may
observe and process messages in different orders. This is
where lattices come into play. Lattices avoid inconsistency and
guarantee replica convergence via their ACI properties, which
make them resilient to message reordering and duplication.
Anna combines asynchronous multi-master replication with
lattice-based state management to remain scalable across both
low and high conflict workloads while still guaranteeing
consistency.

V. ANNA ARCHITECTURE

Figure 1 illustrates Anna’s architecture on a single server.
Each Anna server consists of a collection of independent
threads, each of which runs the coordination-free actor model.
Each thread is pinned to a unique CPU core, and the number
of threads never exceeds the number of available CPU cores.
This 1:1 correspondence between threads and cores avoids
the overhead of preemption due to oversubscription of CPU
cores. Anna’s actors share no key-value state; they employ
consistent hashing to partition the key-space, and multi-master
replication with a tunable replication factor to replicate data
partitions across actors. Anna actors engage in epoch-based
key exchange to propagate key updates at a given actor to other
masters in the key’s replication group. Each actor’s private
state is maintained in a lattice-based data-structure (Section
VI), which guarantees that an actor’s state remains consistent
despite message delays, re-ordering, and duplication.

5

Fig. 1: Anna’s architecture on a single server. Remote users are
served by client proxies that balance load across servers and
cores. Anna actors run thread-per-core with private hashtable
state in shared RAM. Changesets are exchanged across threads
by multicasting in memory; exchange across servers is done
over the network with protobufs.

A. Anna actor event loop

We now discuss Anna’s actor event loop and asynchronous
multicast in more detail.

Each Anna actor repeatedly checks for incoming requests
for puts and gets from client proxies, serves those requests,
and appends results to a local changeset, which tracks the
key-value pair updated within a period of time (the multicast
epoch).

At the end of the multicast epoch, each Anna actor multi-
casts key updates in its changeset to relevant masters responsi-
ble for those keys, and clears the changeset. It also checks for
incoming multicast messages from other actors, and merges
the key-value updates from those messages into its local state.
Note that the periodic multicast does not occur on the critical
path of request handling.

Anna exploits the associativity of lattices to minimize com-
munication via a merge-at-sender scheme. Consider a “hot”
key k that receives a sequence of updates {u1, u2, ..., un}
in epoch t. Exchanging all these updates could be expen-
sive in network and computation overhead. However, note
that exchanging {u1, u2, ..., un} is equivalent to exchanging
just the single merged outcome of these updates, namely
t(... t (u1, u2), ...un). Formally, denote s as the state of key
k on another replica, we have

t(... t (t(s, u1), u2), ...un) = t(s,t(... t (u1, u2), ...un))

by associativity. Hence batches of associative updates can be
merged at a sending replica without affecting results; merging
at the sender can dramatically reduce communication overhead
for frequently-updated hot keys, and reduces the amount of
computation performed on a receiving replica, which only
processes the merged result of updates to a key, as opposed
to every individual update.

VI. FLEXIBLE CONSISTENCY

As discussed in Section I, high performance KVSs can
benefit a wide range of applications, each of which may vary in
its consistency requirements. For example, Amazon’s Dynamo
shopping cart [2] focuses on supporting causally consistent
single-key updates. On the other hand, applications that re-
quire multiple writes to succeed atomically need transactional
support like read committed isolation [8].

Recent research has found that a wide array of consistency
levels, including causal consistency and read committed, can
be implemented in a coordination-free fashion [8]. A common
requirement for coordination-free consistency levels is conver-
gence: replicas of the same items should converge when they
process the same set of messages, regardless of the order in
which these messages arrive. This can be achieved by handling
client requests and gossip in a way that is ACI (Associative,
Commutative, Idempotent).

These properties are attractive, but they are far from trivial
to achieve in general-purpose programs. Writing a large system
to be ACI – and guaranteeing its correctness – is a difficult
challenge.

In this section, we describe how Anna leverages ACI
composition across small components to achieve a rich set
of consistency guarantees—a modular software design pattern
derived from the Bloom language [12]. Using ACI composi-
tion, we were able for the first time to easily build the full
range of coordination-free consistency models [8] from the
literature in a single KVS.

A. ACI Building Blocks

Proposals for ACI systems go back decades, to long-running
transaction proposals like Sagas [35], and have recurred in
the literature frequently. An ongoing question of the ACI
literature was how programmers could achieve and enforce
ACI properties in practice. For the Bloom language, Conway et
al. proposed the composition of simple lattice-based (ACI)
building blocks like counters, maps and pairs, and showed that
complex distributed systems could be constructed with ACI
properties checkable by induction [12]. Anna adopts Bloom’s
lattice composition approach. This bottom-up composition
has two major advantages: First, in order to verify that a
system is ACI, it is sufficient to verify that each of its simple
building blocks is a valid lattice (has ACI properties), and the
composition logic is ACI—this is more reliable than directly
verifying ACI for a complex data structure. Second, lattice
composition results in modular system design, which allows
us to easily figure out which component needs to be modified
when maintaining or updating the system.

B. Anna Lattice Composition

Anna is built using C++ and makes use of C++’s template
structures to offer a flexible hierarchy of lattice types. As
shown in Listing 1, the main data member in an Anna instance
is represented as a C++ template of type MapLattice, which
is a hash map parameterized by an immutable key type K, and
a value type L that descends from Lattice. Any descendant
of Lattice must implement a merge method that is ACI.

6

Fig. 2: A general template for ahieving coordination-free
consistency

1 template <typename K, typename L>
2 class Anna {
3 protected:
4 MapLattice<K, L> kvs;
5 public:
6 V get(const K& k)
7 {
8 return kvs.reveal(k);
9 }

10

11 void put(const K& k, const L& l)
12 {
13 return kvs.merge(k, l);
14 }
15 };

Listing 1: Anna C++ Template

Users’ GET requests are handled via the
MapLattice.reveal method, which returns the current
values associated with the requested keys. PUT requests
are handled via the MapLattice.merge method, which
merges the new key-value pairs into the MapLattice. If
an input’s key does not exist in the hash map, Anna simply
stores the new key-value pair into the hash map. Otherwise,
the values associated with the key are merged using the
merge function of lattice type L.

This design allows for a wide range of ACI, coordination-
free objects to be stored in Anna. The design of those
object classes determine the consistency model that is pro-
vided. Figure 2 sketches a general template for achieving
this coordination-free consistency. In the style of existing
systems such as Cassandra and Bayou, programmers can
embed application-specific conflict resolution logic into the
merge function of an Anna ValueLattice. Anna gives the
programmer the freedom to program their ValueLattices in
this ad hoc style, and in these cases guarantees only replica
convergence. We define this level of ad hoc consistency as
simple eventual consistency.

C. Consistency via Lattices: Examples

One of Anna’s goals is to relieve developers of the burden of
ensuring that their application-specific merge functions have
clean ACI semantics. To achieve this, we can compose ad hoc
user-defined merge logic within simple but more principled

Fig. 3: Lattice composition for achieving causal consistency

lattices that maintain update metadata with ACI properties
guaranteed by construction. In this section we demonstrate that
a variety of well-known consistency levels can be achieved in
this fashion. We begin by reviewing two popular consistency
levels and demonstrating how Anna’s modular design helps
achieve their guarantees with minimal programming overhead.

1) Causal Consistency: Causal consistency keeps track of
the causal relationship between different versions of the same
object. Under causal consistency, if a user Alice updates a
record, and the update is observed by a user Bob, then Bob’s
later update to the same record will overwrite Alice’s update
(instead of invoking the record’s merge operator) since the
two updates are causally related. However, if Bob updates
the record without observing Alice’s update, then there is no
causal relationship between their updates, and the conflict will
be resolved by invoking the record’s merge operator.

Figure 3 shows Anna’s lattice composition that supports
causal consistency. Note that a vector clock can be imple-
mented as a MapLattice whose keys are client proxy ids and
values are version numbers associated with each proxy id. A
version number can be implemented as a MaxIntLattice whose
element is an integer and merge function takes the maximum
between the input and its current element. Therefore, the
integer associated with MaxIntLattice is always increasing,
which can be used to represent the monotonically increasing
version number. When the proxy performs a read-modify-
write operation, it first retrieves the current vector clock,
increments the version number corresponding to the proxy id,
and writes the updated object together with the new vector
clock to the server. The merge function of PairLattice works in
lexicographic order on the pair; where the first element of the
pair corresponds to a vector clock, and the second corresponds
to the actual value lattice associated with a key. Given two
PairLattices P (a, b) and Q(a, b), if P.a � Q.a, then P (a, b)
causally follows Q(a, b), and the result is simply P (a, b); the
opposite is true if Q.a � P.a. However if P.a and Q.a are
incomparable, then the two pairs correspond to concurrent
writes, and the result is merged as (P (a)tQ(a), P (b)tQ(b)).
The implementation of the merge function of PairLattice for
achieving causal consistency in given in Listing 2.

As a simple example, consider a scenario where we have
two clients (x, y) performing read-modify-write operations to
Anna, whose ValueLattice has set as the element and set union

7

1 template <typename T>
2 class CausalPairLattice {
3 protected:
4 VersionValuePair<T> element;
5 public:
6 void merge(const VersionValuePair<T> &p)
7 {
8 // store the previous vector clock
9 // before merging

10 MapLattice<int, MaxLattice<int>> prev
11 = this->element.vector_clock;
12 // merge the current and
13 // the input vector clocks
14 this->element.vector_clock
15 .merge(p.vector_clock);
16 if (this->element.vector_clock == prev)
17 {
18 // do nothing, as the new
19 // vector clock is dominated
20 }
21 else if (this->element.vector_clock
22 == p.vector_clock)
23 {
24 // overwrite the current value with
25 // the new one, as its vector clock
26 // is dominated
27 this->element.value.assign(p.value);
28 }
29 else
30 {
31 // merge the two values, as
32 // the vector clocks are not
33 // comparable
34 this->element.value.merge(p.value);
35 }
36 }
37 };

Listing 2: Implementation of the merge function of PairLattice
for achieving causal consistency

as the merge function. Initially, the value corresponding to key
k is an empty set, with vector clock (x: 0, y: 0). Consider the
following two cases. In the first case, x reads key k, retrieves
the vector clock (x: 0, y: 0), and writes value {a} with updated
vector clock (x: 1, y: 0). After receiving the update, Anna
determines that vector clock (x: 1, y: 0) dominates (x: 0, y:
0), and therefore overwrites the empty set with {a}. Then, y
reads k, retrieves the vector clock (x: 1, y: 0), and writes value
{b} with updated vector clock (x: 1, y: 1). Anna determines
that vector clock (x: 1, y: 1) dominates (x: 1, y: 0), and
therefore overwrites {a} with {b}. In the second case, x and
y simultaneously read key k, retrieve the vector clock (x: 0, y:
0), and write back {a} and {b} with updated vector clock (x:
1, y: 0) and (x: 0, y: 1). Suppose x’s update arrives first. As
in the previous case, Anna updates the value of k to {a} and
sets its vector clock to (x: 1, y: 0). However, when y’s update

Fig. 4: Lattice composition for achieving read committed

arrives, Anna determines that (x: 1, y: 0) and (x: 0, y: 1) are
incomparable, and therefore invokes the merge function (set
union) to resolve conflicts. The resulting value is then set to
{a, b}, with vector clock (x: 1, y: 1).

2) Read Committed: Read committed is a widely used
isolation level in transactional databases [36]. Anna employs
the coordination-free definition of read committed introduced
in [8]. Here, consistency is discussed at the granularity of
transactions, consisting of a sequence of reads and writes to
the KVS. Read committed prevents both dirty writes and dirty
reads, and ensures atomicity of writes. In order to prevent
dirty writes in a weakly consistent system, it is sufficient to
ensure that writes to each key exhibit a total ordering with
respect to transactions. Although different replicas may receive
writes in different orders, the final state of the KVS should be
equivalent to the result of a serial execution of transaction
writes. This can be achieved by appending a timestamp to
each transaction (and to each write within the transaction)
and applying a “larger timestamp wins” conflict resolution
policy at each replica. Note that this monotonically increasing
timestamp can be easily implemented using a MaxIntLattice.

To prevent dirty reads, we buffer all writes of a transaction at
the client proxy until commit time, ensuring that uncommitted
writes never appear in the KVS. To guarantee atomicity of
writes, the client sends all writes in one batch to a single
Anna actor, ensuring that either all writes reach the Anna
server or none. The actor then distributes writes to other actors
following the consistent hash ring. Figure 4 shows the lattice
composition that supports read committed isolation level. The
difference between the lattice composition for causal consis-
tency and read committed is that we replace the MapLattice
that represented growing vector clocks with a MaxIntLattice
that represents transaction timestamps. The merge function of
the new PairLattice compares the timestamp (MaxIntLattice)
and modifies the ValueLattice to be the ValueLattice corre-
sponding to the larger timestamp. If the timestamps are equal,
then it implies that these writes are issued within the same
transaction, and in this case the ValueLattice’s merge logic
is invoked3. The implementation of the merge function of
PairLattice for achieving read committed isolation level is
given in Listing 3.

Consider an example where we have two transactions T1

3To support SQL’s multiple sequential commands per transaction, we
can replace these flat timestamps with a nested PairLattice of (transaction
timestamp, command number), both being MaxIntLattices.

8

1 template <typename T>
2 class ReadCommittedPairLattice {
3 protected:
4 TimestampValuePair<T> element;
5 public:
6 void merge(const TimestampValuePair<T>& p)
7 {
8 if (p.timestamp >
9 this->element.timestamp)

10 {
11 this->element.timestamp
12 .merge(p.timestamp);
13 // overwrite the current value
14 // with the new one, as its
15 // timestamp is smaller
16 this->element.value = p.value;
17 }
18 else if (p.timestamp ==
19 this->element.timestamp)
20 {
21 // merge the two values, as
22 // their timestamps are equal
23 this->element.value
24 .merge(p.value);
25 }
26 }
27 };

Listing 3: Implementation of the merge function of PairLattice
for achieving read committed

and T2, with timestamp 1 and 2 respectively. T1 performs the
following sequence of operations: {w1[k1], w1[k2], r1[k3]},
and T2 performs {w2[k1], w2[k2], r2[k4]}. Under read com-
mitted, T1 and T2 perform reads to Anna and buffer all writes
locally. Both transactions issue the buffered write requests
only after receiving the responses of the read requests and
determining that the transactions are safe to commit.

Buffering writes on the client proxy prevents dirty reads.
For example, if T1 failed after w1[k1], this uncommitted write
is not visible to other transactions since it is buffered at the
proxy.

Anna avoids dirty writes by using transaction timestamps to
consistently order writes. Consider a case where one replica
of k1 receives the writes in the order {w1[k1], w2[k1]} , and
another replica in the order {w2[k1], w1[k1]}. However, the
value of both replica converge to w2[k1], as T2’s write has a
larger timestamp, and therefore dominates T1’s write, w1[k1].
Multi-key writes are also eventually consistently ordered via
the above timestamp precedence mechanism.

D. More Kinds of Consistency

Anna’s modular design allows us to easily identify which
component needs to be changed as we switch from simple
eventual consistency to other consistency levels. This pre-
vents the CACE (Changing Anything Changes Everything)
phenomenon commonly observed in systems with monolithic

Type of Consistency Lattice Server Client Proxy
Causal Consistency 20 12 22
Read Uncommitted 17 7 4
Read Committed 17 10 9

Item Cut Isolation 17 7 10
Monotonic Reads 17 7 4
Monotonic Writes 17 7 4

Writes Follow Reads 17 7 18
Read Your Writes 17 7 4

PRAM 17 7 4

Fig. 5: Lines of code modified per component across consis-
tency levels.

design. To further demonstrate the flexibility of lattice compo-
sition, we modified Anna to support several other consistency
levels including read uncommitted, item-cut isolation, and read
your writes [8]. It turns out that the lattice composition for
these consistency levels are the same as that of read committed.

Since read uncommitted does not require preventing dirty
reads, we can easily achieve this level by disabling client-side
buffering. Consider the same example in read committed, if T1
issues w1[k1] and then fails, it is possible for other transactions
to observe the value v1 even if it is an uncommitted result that
need to be rolled back.

Item cut isolation requires that if a transaction reads the
same record more than once, it has to read the same value.
To provide this guarantee, we buffer the record read at the
client side, and when the transaction attempts to read the same
record, it invokes the client-side cache instead of querying the
server. Again, no modification to the lattice composition is
required to achieve this requirement.

Read your writes is a session-based isolation level. Within a
session, if a client reads a key after updating it, the read must
either reflect the updated value or a value that overwrote the
previously written value. Anna achieves this guarantee by at-
taching a unique timestamp to each client session and applying
the same “larger timestamp wins” conflict resolution policy as
before. The client also caches all the writes performed within
the session. After it retrieves the value of a previously updated
key, it merges the value with the cached value before returning
the result. This way, Anna ensures that the value being read
is at least as recent as the client’s own update in terms of the
timestamp.

Figure 5 shows the additional number of lines of code (loc)
in C++ required on top of simple eventual consistency for
each coordination-free consistency level. It is easy to conclude
that extending Anna beyond simple eventual consistency incurs
very little programming overhead.

VII. IMPLEMENTATION

The Anna actor and client proxy are implemented entirely
in C++. The codebase—including the lattice library, all the
consistency levels, the server code, and client proxy code—
amounts to about 2000 lines of C++ on top of commonly-used
libraries including ZeroMQ and Google Protocol Buffers. In
the ensuing discussion, we refer the reader back to Figure 1.

9

A. Actor

To store the private KVS replica at each actor, we use
the unordered map from the C++ standard library. Inter-
actor multicast is achieved via the pub-sub communication
mechanism of ZeroMQ, a high-performance asynchronous
messaging library. To perform well across scales, we leverage
ZeroMQ in different ways depending on whether we are
communicating within or across machines. When two actors
communicate within a single machine, the sender first moves
the message into a shared memory buffer, and then sends the
address of the buffer to the receiver using ZeroMQ’s inproc
transport, which is optimized for intra-process communica-
tion. The receiver, after getting the address, reads the shared
buffer, updates its local KVS replica, and garbage collects the
shared buffer. When two actors communicate across different
machines, the sender first serializes the message into a byte-
string using Google Protocol Buffers. It then sends the byte-
string using ZeroMQ’s tcp transport, which is designed for
inter-node communication. After receiving the byte-string, the
receiver first de-serializes the message, and then updates its
KVS replica accordingly.

Anna uses consistent hashing to partition and replicate key-
value pairs across actors. Following the design of Dynamo [2],
each actor has a unique id, and Anna applies a CRC32 hash
on the id to assign the actor to a position on the hash ring. It
applies the same hash function to a key in order to determine
the actors responsible for storing the key. Each key-value pair
is replicated N-1 times on the clockwise successor actors,
where N is the user-provided replication factor.

Anna actors support three operations: GET, PUT, and
DELETE. GET retrieves the value of a key from a (single)
replica. Coordination-free consistency, as discussed in Sec-
tion VI, does not require a quorum, so GET need not merge
values from more than one replica. The GET response may
be stale; the staleness is bounded by the multicast period,
which is an adjustable parameter to balance performance and
staleness. PUT persists the merge of a new value of a key
with a (single) replica using the lattice merge logic. DELETE
is implemented as a special PUT request with an empty value
field. Actors free the heap memory of a key/value pair only
when the DELETE’s timestamp dominates the key’s current
timestamp. To completely free the memory for a key, each
actor maintains a vector clock that keeps track of the latest-
heard timestamps of all actors, which is kept up-to-date during
multicast. Actors free the memory for a key only when the
minimum timestamp within the vector-clock becomes greater
than the DELETE’s timestamp. After that time, because Anna
uses ordered point-to-point network channels, we can be sure
no old updates to the key will arrive. This technique extends
naturally to consistency levels that require per-key vector-
clocks (such as causal consistency) instead of timestamp. The
difference is that before an actor frees a key, it asynchronously
queries other replicas for the key’s vector-clock to make sure
they are no less than the DELETE’s vector-clock.

B. Client Proxy

Client proxies interact with actors to serve user requests.
In addition to GET, PUT, and DELETE, proxies expose
two special operations to the users for consistency lev-
els that involve transactions: BEGIN TRANSACTION and
END TRANSACTION. All operations that fall in between
a pair of special operations belong to a single transaction.
Transaction ID is uniquely generated by concatenating a
unique actor sequence number with a local timestamp.

Specific data structures are required at the proxy to support
certain advanced consistency levels; these data structures are
only accessible in a single client-proxy thread. For read com-
mitted, we need to create a message buffer that stores all PUT
requests from a single transaction. For item-cut isolation, we
need to cache key-value pairs that have already been queried
within the same transaction. Currently, both the message buffer
and the cache are implemented with the unordered map from
the C++ standard library.

Client-actor communication is implemented with Linux
sockets and Protocol Buffers. The client proxy uses the same
consistent hashing function to determine the set of actors that
maintain replicas of a given key. For load balancing, requests
are routed to a randomly chosen replica. In case of failure
and network delay, the client proxy times out and retries the
request on other actors.

C. Actor Joining and Departure

In order to achieve steady performance under load burst,
actors can be dynamically added or removed from the Anna
cluster without stalling the system. Anna handles actor joining
and departure in a similar fashion as Dynamo [2] and the work
in [37]. Note that a new actor can be spawned from within an
existing node, or from a new node. When a new actor joins
the cluster, it first broadcasts its id to all existing actors. Each
existing actor, after receiving the id, updates its local copy of
the consistent hash ring and determines the set of key-value
pairs that should be managed by the new actor. It then sends
these key-value pairs to the new actor and deletes them from
its local KVS replica. If the pre-existing actor receives queries
involving keys that it is no longer responsible for, it redirects
these requests to the new actor. After the new actor receives
key-value pairs from all existing actors, it multicasts its id to
all client proxies. Upon receiving the id, client proxies update
the consistent hash ring so that relevant requests can be routed
to the new actor.

When an actor is chosen to leave the cluster, it first
determines the set of key-value pairs every other actor should
be responsible for due to its departure. It then sends them
to other actors along with its intention to leave the cluster.
Other actors ingest the key-value pairs and remove the leaving
actor from the consistent hash ring. The leaving actor then
broadcasts to all client proxies to let them update the consistent
hash ring and retry relevant requests to proper actors.

VIII. EVALUATION

In this section, we experimentally justify Anna’s design
decisions on a wide variety of deployments. First we evaluate

10

Anna’s ability to exploit parallelism on a multi-core server
and quantify the merit of our Coordination-free actor model.
Second, we demonstrate Anna’s ability to scale incrementally
under load burst. We then compare Anna against state-of-the-
art KVS systems on both a single multi-core machine and a
large distributed deployment. Finally, we show that the con-
sistency levels from Section VI all provide high performance.

A. Coordination-free Actor Model

1) Exploiting Multicore Parallelism: Recall that under the
Coordination-free actor model, each actor thread maintains a
private copy of any shared state, and asynchronously mul-
ticasts the state to other replicas. This section demonstrates
that the Coordination-free actor model can achieve orders
of magnitude better performance than a conventional shared-
memory architecture on a multi-core server.

To establish comparison against the shared-memory im-
plementation, we built a minimalist multi-threaded key-value
store using the concurrent hash map from the Intel Thread
Building Blocks (TBB) library [38]. TBB is an open source
library consisting of latch-free, concurrent data structures,
and is among the most efficient libraries for writing scalable
shared-memory software. We also benchmark Anna against
Masstree, another shared-memory key-value store that exploits
multi-core parallelism [18]. Finally, we implemented a multi-
threaded key-value store using the C++ unordered map without
any thread synchronization such as latching or atomic instruc-
tions. Note that this key-value store is not even thread-safe:
torn writes could occur when multiple threads concurrently
update the same key. It reflects the ideal performance one
can get for any shared-memory KVS implementation like
Masstree, TBB, etc.

Our experiments run on Amazon m4.16xlarge instances.
Each instance is equipped with 32 CPU cores. Our experiments
utilize a single table with 1M key-value pairs. Keys and values
are 8 bytes and 1KB in length, respectively. Each request
operates on a single key-value pair. Requests are update-
only to focus on potential slowdowns from conflicts, and we
use zipfian distributions with varying coefficients to generate
workloads with different levels of conflict.

In our first experiment, we compare the throughput of Anna
against the TBB hash map, Masstree, and the unsynchronized
KVS (labeled as “Ideal”) on a single multi-core machine.
We measure the throughput of each system while varying the
number of threads available. We pin each thread to a unique
CPU core, and increase thread count up to the hardware limit
of 32 CPU cores. In addition to measuring throughput, we use
Linux’s perf profiler to obtain a component-wise breakdown
of CPU time. To measure the server’s full capacity, requests
are pre-generated based on the workload distribution at each
thread. Since Anna is flexible about data placement policy,
we experiment with different replication factors, from pure
partitioning (like Redis Cluster or MICA) to full replication (a
la Bayou) to partial replication (like ScyllaDB). As a baseline,
Anna employs simple eventual consistency, and threads are set
to multicast every 100 milliseconds. We use the same consis-
tency level and multicast rate in all subsequent experiments

 0 M

 50 M

100 M

150 M

200 M

250 M

300 M

350 M

 0 5 10 15 20 25 30 35

(a) High contention (zipf coefficient = 4)

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

number of threads

Anna (full replication)
Anna (rep = 3)
Anna (rep = 1)

TBB
Ideal

Masstree

 0 M
 5 M
 10 M
 15 M
 20 M
 25 M
 30 M
 35 M
 40 M

 0 5 10 15 20 25 30 35

(b) Low contention (zipf coefficient = 0.5)

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

number of threads

Anna (full replication)
Anna (rep = 3)
Anna (rep = 1)

TBB
Ideal

Masstree

Fig. 6: Anna’s single-node throughput across thread counts.

KVS RH AI LM M O CM
Anna (full) 90% 0% 4% 4% 2% 1.1

Anna (rep=3) 91% 0% 5% 2% 2% 1
Anna (rep=1) 94% 0% 5% 0% 1% 1

Ideal 97% 0% 0% 0% 3% 17
TBB 4% 95% 0% 0% 1% 19

Masstree 7% 92% 0% 0% 1% 16

(a) High Contention

KVS RH AI LM M O MF
Anna (full) 3% 0% 3% 92% 2% 32

Anna (rep=3) 25% 0% 4% 69% 2% 3
Anna (rep=1) 93% 0% 5% 0% 2% 1

Ideal 97% 0% 0% 0% 3% 32
TBB 70% 26% 0% 0% 4% 32

Masstree 20% 78% 0% 0% 2% 32

(b) Low Contention

Fig. 7: Performance breakdown for different KVSs under
both contention levels when using 32 threads. CPU time
is split into 5 categories: Request handling (RH), Atomic
instruction (AI), Lattice merge (LM), Multicast (M), and
others (O). The number of L1 cache misses (CM) for the high-
contention workload and the memory footprint (MF) for the
low-contention workload relative to Anna (rep=1) are shown
on the right-most column.

unless otherwise stated. For each thread count, we repeat the
experiment 10× and plot the average throughput.

Figure 6a and 7a show the result of the high-contention
experiment, with zipf coefficient set to 4. We observe that
both the TBB hashmap and Masstree fail to exploit parallelism
on this workload because most requests perform an update
against the same key, and concurrent updates to this key have
to be serialized. Furthermore, both the TBB hashmap and
Masstree must employ synchronization to prevent a single key-
value pair from concurrent modification by multiple threads.

11

Synchronization overhead is proportional to the number of
contending threads, which causes those systems’ performance
to plateau as we increase the number of threads in the system.
Synchronization cost manifests as cache coherence overhead
on multi-core hardware [39]. Figure 7a shows that TBB and
Masstree spend 92% - 95% of the CPU time on atomic
instructions under high contention, and only 4% - 7% of the
CPU time is devoted to request handling. As a result, the TBB
hash map and Masstree perform 50× slower than Anna (rep
= 1) and 700× slower than Anna (full replication).

The unsynchronized store performs 6× faster than the TBB
hashmap and Masstree but still much slower than Anna. Al-
though it does not use any synchronization to prevent threads
from concurrently modifying the same key-value pairs, it
suffers from cache coherence overhead resulting from threads
modifying the same memory addresses (the contended key-
value pairs). This is corroborated in Figure 7a, which shows
that although both Anna and the unsynchronized store spend
the majority of the CPU time processing requests, the unsyn-
chronized store incurs 17× more cache misses than Anna.

In contrast, threads in Anna perform updates against their
local state in parallel without synchronizing, and periodically
exchange state via multicast. Although the performance is
roughly bounded by the replication factor under high con-
tention, it is already far better than the shared-memory imple-
mentation across the majority of replication factors. Figure 7a
indicates that Anna indeed achieves wait-free execution: the
vast majority of CPU time (90%) is spent processing requests
without many cache misses, while overheads of lattice merge
and multicast are small. In short, Anna’s Coordination-free
actor model addresses the heart of the scalability limitations
of multi-core KVS systems.

Figure 6b and 7b show the result of the low-contention ex-
periment, with zipf coefficient 0.5. Unlike the high contention
workload, all data are likely to be accessed with this contention
level. Anna (rep=1) achieves excellent scalability due to its
small memory footprint (data is partitioned across threads).
However, despite the linear-scaling of Anna (rep=3), its abso-
lute throughput is 4× slower than Anna (rep=1). There are two
reasons that have led to this performance degradation. First,
increasing the replication factor increases the thread’s memory
footprint. Furthermore, under low contention, the number of
distinct keys being updated within the gossip period increases
significantly. Therefore, we can no longer exploit merge-at-
sender to reduce the gossip overhead. Figure 7b shows that
69% of the CPU time is devoted to processing gossip for Anna
(rep=3). Following this analysis, Anna (full replication) does
not scale because any update performed at one thread will
eventually be gossiped to every other thread, and therefore
the performance is equivalent to serially executing requests
with one thread. Although TBB and Masstree do not incur
gossip overhead, they suffer from larger memory footprint
and high cost of (conservative) synchronization operations as
shown by our profiler measurements in Figure 7b. The lesson
learned from this experiment is that for systems that support
multi-master replication, having a high replication factor under
low contention workloads can hurt performance. Instead, we
want to dynamically monitor the data’s contention level and

 0 M

 5 M

 10 M

 15 M

 20 M

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

number of threads

One Server
Two Servers

Three Servers

Fig. 8: Anna’s throughput while incrementally adding threads
to multiple servers.

selectively replicate the highly contented keys across threads.
We come back to this subject in Section IX.

2) Scaling Across Scales: This section demonstrates Anna’s
ability to scale smoothly from a single-node deployment to
a multi-node deployment. Anna’s replication factor is set to
3, and we use the low contention workload from the multi-
core scalability evaluation in Section VIII-A1. We measure
throughput while varying the number of available threads.
The first 32 threads reside on a single node. The next 32
threads reside on a second node, while any remaining threads
(at thread count greater than 64) reside on a third node.

Figure 8 shows that Anna exhibits smooth linear scaling
with increasing thread count, on both a single node (32 or
fewer threads) and multiple nodes (33 or more threads). We
observe a small drop in performance as we add a 33rd thread
because this is the first thread that resides on the second
node, and therefore triggers distributed multicast across the
network. We do not observe a similar drop in performance as
we add threads on the third node (at 65 threads) because the
overhead of distributed multicast already affects configurations
with thread counts between 33 and 64. Figure 8 illustrates that
Anna is able to achieve near-linear scalability across different
scales with the Coordination-free actor model.

B. Elastic Scalability

This section explores how well Anna’s architecture achieves
elastic scaling under load bursts. Our goal in this study is
not to compare thread allocation policies per se, but rather to
evaluate whether the Coordination-free actor model enables
fine-grained elasticity. Hence we focus on Anna’s reaction
time, assuming an omniscient policy.

The experiment runs a read-modify-write, low contention
YCSB workload [40], and uses 25 byte key, 1KB value
records in a single table of 1M records. We perform our
experiment on Amazon EC2 m4.x16 large instances. Anna is
configured with replication factor 3. Note that the performance
characteristics of experiments performed in this subsection
and the next (VIII-C) differ from previous experiments. In
earlier experiments, the goal was to evaluate Anna’s maximum
processing capacity when handling concurrent update requests;
as a result, requests were update-only and pre-generated on
actor threads to avoid request overhead due to network. Here,
the goal is to evaluate how Anna performs in a more real-
world setting, so requests are chosen to have a mix of reads

12

0.0 M
0.5 M
1.0 M
1.5 M
2.0 M
2.5 M
3.0 M
3.5 M
4.0 M

 0 5 10 15 20 25 30
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

L
a

te
n

c
y
 (

m
ic

ro
s
e

c
o

n
d

)

Time (s)

Throughput
Latency

Fig. 9: Anna’s ability to elastically scale under load burst
while maintaining performance.

and writes, and are being sent from client proxies on other
nodes. Therefore in this section we expect to observe network
overhead; the effects are further discussed in Section VIII-C.

At the beginning of our experiment, we use one EC2
instance with 32 threads as the server and a sufficient number
of client proxy instances to saturate the server. At the 10-
second mark, we triple the load from the client proxies to
create a burst. At the same time, 64 more threads from two
server nodes are added to the Anna cluster. At the 20-second
mark, we reduce the load back to the original and remove 64
threads from the cluster. Throughout the YCSB benchmark,
we monitor Anna’s throughput and the request latency.

As shown in Figure 9, Anna’s throughput increases by 2×
at the 10-second mark when we add in 64 additional threads,
and drops to the original throughput at the 20-second mark
when we remove the same number of threads. Throughout the
experiment, the request latency stays roughly the same. The
brief latency spikes at the 10-second mark and the 20-second
mark are due to adding and removing nodes to the cluster.

C. Comparison with Popular Systems

This section compares Anna against widely-deployed, state-
of-the-art key value stores. We perform two experiments; the
first compares Anna against Redis [6] on a single node, and
the second compares Anna against Cassandra [3] on a large
distributed deployment. Both experiments run YCSB, and use
the same configuration as in Section VIII-B with different
contention levels.

1) Single node multi-core experiment: This section com-
pares Anna with Redis on a single multi-core server. While
Anna can exploit multi-core parallelism, Redis is a single-
threaded KVS system, and cannot exploit any parallelism
whatsoever. We therefore additionally compare Anna against
Redis Cluster, which knits together multiple independent Redis
instances, each of which contain a shard of the KVS.

In this experiment, we use a single EC2 instance as a server
and enough client proxy instances to saturate the server. The
Redis Cluster baseline runs an independent Redis instance on
each available server thread.

Figure 10a compares each system under high contention
while varying thread count. As in our earlier high contention
experiments, clients pick keys with a zipfian coefficient of
4. Under high contention, each Redis Cluster’s instances are
subject to skewed utilization, which limits overall throughput.

0.0 M

0.2 M

0.4 M

0.6 M

0.8 M

1.0 M

1.2 M

1.4 M

 0 5 10 15 20 25 30 35

(a) High contention (zipf coefficient = 4)

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

number of threads

Anna (full replication)
Anna (rep = 3)
Anna (rep = 1)
Redis Cluster

Redis

0.0 M

0.2 M

0.4 M

0.6 M

0.8 M

1.0 M

1.2 M

1.4 M

 0 5 10 15 20 25 30 35

(b) Low contention (uniform distribution)

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

number of threads

Anna (full replication)
Anna (rep = 3)
Anna (rep = 1)
Redis Cluster

Redis

Fig. 10: Throughput comparison between Anna and Redis on
a single node.

In contrast, Anna can spread load for hot keys across replicas.
When the replication factor is greater than 1, Anna’s through-
put increases until the number of threads is slightly larger
than the replication factor and then plateaus. If the hot keys
are fully replicated, we observe that the throughput continues
to grow as we increase the number of threads.

Figure 10b shows the result of the low contention ex-
periment. As expected, Redis’ throughput remains constant
with increasing thread count. In contrast, both Anna and
Redis Cluster can exploit multi-core parallelism, and their
throughputs scale with increasing thread count. Interestingly,
Anna (rep=3) and Anna (full replication) scale quite nicely,
and the performance penalty due to gossip is far less significant
compared to the result in Section VIII-A. The reason is that
when the network is involved, the majority of overhead goes
to network packet handling and message serialization and
deserialization. Within a single node, gossip is performed
using the shared memory buffer, and does not incur network
overhead. Therefore, the overhead becomes far less significant.
Experiments in this section show that Anna can significantly
outperform Redis Cluster by replicating hot keys under high
contention, and can match the performance of Redis Cluster
under low contention.

Note that unlike the experiments in Section VIII-A, we
do not observe linear scalability for Anna and the y axis
has reduced by orders of magnitude. This is in keeping with
earlier studies [41], [42], which demonstrate that this is due
to message overheads: at a request length of 1KB we cannot
expect to generate much more than 10Gbps of bandwidth
due to message overheads. We attempted to improve the
performance by varying the request size and batching the
requests. Although these techniques did improve the absolute
throughput, the scalability trend remained the same, and we
continued to be bottlenecked by the network.

13

0 M
10 M
20 M
30 M
40 M
50 M
60 M
70 M
80 M

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

number of nodes

Anna (1 thread/node)
Anna (4 threads/node)

Anna (32 threads/node)
Cassandra

Fig. 11: Anna vs Cassandra, distributed throughput.

0.0 M
0.2 M
0.4 M
0.6 M
0.8 M
1.0 M
1.2 M
1.4 M
1.6 M
1.8 M

Simple
Eventual

Consistency

Causal
Consistency

Read
Uncommitted

Read
Committed

Item Cut
Isolation

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Fig. 12: Performance Across Consistency Levels

2) Distributed experiment: In a distributed setting, we
compare Anna against Cassandra, one of the most popular dis-
tributed KVS systems [3]. To ensure that Cassandra achieves
the best possible performance, we configure it to use its
weakest consistency level (ONE), which only requires that an
update is reflected on a single node before returning success.
Updates are asynchronously propagated in the background.

We deployed Cassandra and Anna across four EC2 geo-
graphical regions (Oregon, North Virginia, Ireland, and Tokyo)
and measured their scalability by adjusting the number of
nodes per region. The replication factor of both Cassandra
and Anna are set to 3. As in the multi-core experiment, each
server node is a m4.x16large instance and we use multiple
client instances to saturate the server. Clients pick keys to
update from a uniform distribution.

Figure 11 shows that both Anna and Cassandra scale near-
linearly as we increase the number of nodes. However, Anna
has better absolute performance due to its low-overhead single-
threaded execution. Indeed, when we varied the number of
threads available to Anna, we found that Anna could signifi-
cantly outperform Cassandra with just four threads per node
(even though Cassandra used multi-threading). When permit-
ted to use all 32 available cores, Anna outperformed Cassandra
by ∼ 10×. This experiment demonstrates the importance of
Anna’s fast single-node mechanisms; even when a system can
scale to large clusters, fast single-node mechanisms can make
significantly more efficient use of available resources.

D. Performance Across Consistency Levels

Having implemented various consistency levels, we study
the performance implications of the additional codepath for
more advanced consistency levels. Anna is configured to use
all 32 available cores, and the replication factor is set to 3.
We use the low contention requests from Section VIII-C1. For

transaction-based consistency levels, we group every six oper-
ations into one transaction at the YCSB client side. Figure 12
shows the throughput evaluation across different consistency
levels. In general, we observe that the overhead incurred
by these advanced consistency levels is not significant. As
explained in Section VI-C, client-side buffering and caching
requirement sometimes lead to higher throughput for Anna,
which we show using green bars in Figure 12.

For causal consistency, we observe a slight degradation in
throughput as Anna has to maintain the vector clock associated
with each key-value pair, requiring more sophisticated lattice
merge logic. In addition, the size of the vector clock for a
given key is proportional to the number of client proxies
that access the key. Therefore, periodic garbage collection
is required to reduce the size of the vector clock. Similar
throughput degradation is observed for read uncommitted
due to the management of timestamps. For read committed,
throughput increases because the client is required to buffer
all write requests and send them as a single batch at the end
of a transaction, which amortizes the number of round-trips
between the server and the client. For item cut isolation, we
also observe an increase in throughput because repeated reads
to the same record are handled by a client-side cache (which
again saves a round-trip between the server and the client).
The throughput improvement gained from client-side buffering
and caching is highlighted in green. Note that although other
consistency levels does not require client-side buffering or
caching, it is possible to use these techniques to improve
throughput.

IX. CONCLUSION AND FUTURE WORK

Conventional wisdom says that software designed for one
scale point needs to be rewritten when scaling up by 10 −
100× [1]. In this work, we took a different approach, exploring
how a system could be architected to scale across many
orders of magnitude by design. That goal led us to some
challenging design constraints. Interestingly, those constraints
led us in the direction of simplicity rather than complexity:
they caused us to choose general mechanisms (background
key exchange, lattice compositions) that work well across
scale points. Perhaps the primary lesson of this work is that
our scalability goals led us by necessity to good software
engineering discipline.

The lattice composition model at the heart of Anna was crit-
ical to both performance and expressivity. The asynchronous
merging afforded by lattices enabled wait-free performance;
the lattice properties provided a conceptual framework for en-
suring consistency; the composition of simple lattices enabled
a breadth of consistency levels. Scale-independence might
seem to be in conflict with richly expressive consistency. The
lattice composition model resolved that design conflict.

We have further ambitions for Anna in future work, build-
ing on its fine-grained elasticity and flexible replication. In
particular, we want to focus on per-key elasticity, increasing
replication factors by key to deal with transient “hot keys”. The
ideas have a long history (e.g. [43]–[45]); we suspect there
may be more to do in our setting. We also want to look at

14

designs that take advantage of deeper storage tiers for further
cost savings.

REFERENCES

[1] J. Dean, “Challenges in building large-scale information retrieval sys-
tems,” in WSDM, 2009.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in SOSP, 2007.

[3] “Apache Cassandra,” https://cassandra.apache.org/.
[4] “MongoDB,” https://www.mongodb.com.
[5] “Memcached,” https://www.memcached.org.
[6] “Redis,” http://redis.io/.
[7] J. M. Faleiro and D. J. Abadi, “Latch-free synchronization in database

systems: Silver bullet or fool’s gold?” in CIDR, 2017.
[8] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and

I. Stoica, “Highly available transactions: Virtues and limitations,” Proc.
VLDB Endow., vol. 7, no. 3, pp. 181–192, Nov. 2013.

[9] C. J. Clark, “Courtship dives of anna’s hummingbird offer insights into
flight performance limits,” Proceedings of the Royal Society of London
B: Biological Sciences, p. rspb20090508, 2009.

[10] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new
os architecture for scalable multicore systems,” in SOSP, 2009.

[11] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Symposium on Self-Stabilizing Systems.
Springer, 2011, pp. 386–400.

[12] N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier,
“Logic and lattices for distributed programming,” in SoCC, 2012.

[13] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor for-
malism for artificial intelligence,” in Advance Papers of the Conference,
vol. 3. Stanford Research Institute, 1973, p. 235.

[14] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak, “Con-
sistency analysis in bloom: a calm and collected approach.” in CIDR,
2011.

[15] M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for well-
conditioned, scalable internet services,” in SOSP, 2001.

[16] V. Shah and M. V. Salles, “Reactors: A case for predictable, virtualized
oltp actor database systems,” arXiv preprint arXiv:1701.05397, 2017.

[17] P. A. Bernstein, M. Dashti, T. Kiefer, and D. Maier, “Indexing in an
actor-oriented database.” in CIDR, 2017.

[18] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in EuroSys, 2012.

[19] J. J. Levandoski, D. B. Lomet, and S. Sengupta, “The bw-tree: A b-tree
for new hardware platforms,” in ICDE, 2013.

[20] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey, “Palm: Parallel
architecture-friendly latch-free modifications to b+ trees on many-core
processors,” PVLDB, vol. 4, no. 11, 2011.

[21] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: a holistic
approach to fast in-memory key-value storage,” in NSDI, 2014.

[22] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi, “H-store: A high-performance, distributed main memory
transaction processing system,” Proc. VLDB Endow., vol. 1, no. 2, pp.
1496–1499, Aug. 2008.

[23] “Seastar / Scylladb, or how we implemented a 10-times faster Cassan-
dra,” https://goo.gl/E7cxGW.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: scalable causal consistency for wide-area storage with
cops,” in SOSP, 2011.

[25] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Bolt-on causal
consistency,” in SIGMOD, 2013.

[26] “HBase,” https://hbase.apache.org.
[27] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-

hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, 2008.

[28] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, “Managing update conflicts in bayou, a weakly
connected replicated storage system,” in SOSP, 1995.

[29] “Azure DocumentDB,” https://azure.microsoft.com/en-us/services/
documentdb/.

[30] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22,
no. 4, pp. 299–319, 1990.

[31] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, 1998.

[32] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm.” in USENIX Annual Technical Conference, 2014.

[33] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “Non-
scalable locks are dangerous,” in OLS, 2012.

[34] J. M. Faleiro and D. J. Abadi, “Rethinking serializable multiversion
concurrency control,” PVLDB, vol. 8, no. 11, 2015.

[35] H. Garcia-Molina and K. Salem, Sagas. ACM, 1987, vol. 16, no. 3.
[36] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and

I. Stoica, “Coordination avoidance in database systems,” PVLDB, vol. 8,
no. 3, 2015.

[37] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server.” in OSDI, vol. 14, 2014, pp. 583–
598.

[38] “Intel Thread Building Blocks,” https://www.threadingbuildingblocks.
org/.

[39] K. Ren, J. M. Faleiro, and D. J. Abadi, “Design principles for scaling
multi-core oltp under high contention,” in SIGMOD, 2016.

[40] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing. ACM, 2010, pp. 143–154.

[41] A. Kolesnikov and M. Kulas, “Load modeling and generation for ip-
based networks: a unified approach and tool support,” in International
GI/ITG Conference, MMB & DFT. Springer, 2010, pp. 91–106.

[42] “10gb ethernet tests,” http://zeromq.org/results:10gbe-tests/.
[43] G. Copeland, W. Alexander, E. Boughter, and T. Keller, “Data placement

in Bubba,” in ACM SIGMOD Record, vol. 17, no. 3. ACM, 1988, pp.
99–108.

[44] H.-I. Hsiao and D. J. DeWitt, Chained declustering: A new avail-
ability strategy for multiprocessor database machines. University of
Wisconsin-Madison, Computer Sciences Department, 1989.

[45] H. T. Vo, C. Chen, and B. C. Ooi, “Towards elastic transactional
cloud storage with range query support,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 506–514, 2010.

[46] D. G. Feitelson, “Workload modeling for performance evaluation,” in
Performance Evaluation of Complex Systems: Techniques and Tools,
M. C. Calzarossa and S. Tucci, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 114–141.

[47] G. Zipf, Human behavior and the principle of least effort: an
introduction to human ecology. Addison-Wesley Press, 1949. [Online].
Available: https://books.google.com/books?id=1tx9AAAAIAAJ

[48] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Eliminating Boundaries in
Cloud Storage with Anna,” ArXiv e-prints, Aug. 2018.

APPENDIX

A. Workload Skew and Replication Strategy

To motivate our future work on selective replication, we
review concrete numbers for the kind of skew that arises from
typical workloads. Since many workloads are well-modeled
by Zipfian distributions [46], [47], we first look at the key
access statistics under various Zipfian workloads to see how
many keys are hot, cold, or somewhere in between, and then
discuss the implication on the optimal replication strategy.

We generate 1M requests drawn from Zipfian distributions
with varying coefficients and record how many keys are
accessed above certain thresholds. As in the experiments in
Section VIII-A, the database contains 1M key-value pairs.

Figure 13a shows that under low contention (zipf coefficient
0.5), the majority of the keys are accessed very infrequently;
only 25 keys are accessed more than 100 times. Even with
moderate contention (zipf coefficient 0.8), only 24 keys are
accessed more than 1K times and 1 key is accessed more than
10K times out of 1M requests. Therefore, in these cases, there
is no need to replicate keys across actors within a machine to
boost performance.

15

access≥

zipf 0.5 0.6 0.7 0.8

1 557938 516168 461883 391841
10 3468 6071 8035 9309
100 25 100 256 463
1K 0 2 9 24
10K 0 0 0 1

100K 0 0 0 0

(a) Zipfian 0.5 - 0.8

access≥

zipf 1.0 1.5 2.0 3.0 4.0

1 217752 13286 1440 129 34
10 7739 1207 255 47 18

100 698 246 77 20 10
1K 70 53 24 9 5
10K 6 11 7 4 3

100K 0 2 2 2 1

(b) Zipfian 1.0 - 4.0

Fig. 13: Statistics on the number of keys whose access
frequency exceeds certain thresholds after processing 1M
requests drawn from Zipfian distributions with varying coeffi-
cients.

However, as we increase the contention level, access to keys
become more concentrated. In Figure 13b, we observe that
with zipf coefficient 1.5, all accesses are on 1% (13286/1M)
of the keys, and 2 keys get accessed more than 100K times.
Under coefficient 4, only 34 keys are ever accessed among
the 1M requests, with one key being extremely hot. Therefore,
replication in these workloads does help increase performance,
as access to highly contended keys can be spread across
multiple replicas. Hence, the decision of whether or not to
replicate keys depends on the contention level of the workload.

Moreover, the granularity of replication under high con-
tention is crucial. Anna currently employs a single replication
factor across all keys, which could be inefficient. For example,
in the extreme case where the workload exhibits very high
contention (zipf coefficient 4.0), Anna will replicate the entire
database across all actors to attempt to maximize performance.
However, as shown in Figure 13b, the number of keys being
accessed is only on the order of 10s and only 5 them are hot.
Therefore, aggressively replicating the entire database leads to
200K× extra storage overhead, and at the same time increases
unnecessary multicast overhead for cold keys.

The observation above shows that static deployment and
course-grained replication can lead to significant inefficiency.
The solution is to monitor the workload contention and dy-
namically adjust the replication strategy. Moreover, per-key
replication is required to better trade-off between performance
and storage resources. This is a topic of ongoing work [48].

Chenggang Wu is a Ph.D. student at UC Berkeley
working with Professor Joseph M. Hellerstein. His
research interest lies in data-centric systems and
distributed systems. He obtained his B.S. degree in
computer science from Brown University in 2015.

Jose M. Faleiro is a post-doc in computer science at
UC Berkeley. He was previously a Ph.D. student in
the computer science department at Yale University.
He is broadly interested in data management sys-
tems, multi-core systems, and distributed systems.

Yihan Lin is a second-year master student at
Columbia University, consolidating her EECS back-
ground through her undergraduate education at Xian
Jiaotong University and UC Berkeley. Her interests
include a wide variety of topics at the intersection
of computer science and engineering, distributed
system, cloud computing, and data-driven analysis.

Joseph M. Hellerstein is the Jim Gray Professor of
Computer Science at the University of California,
Berkeley. He is an ACM Fellow, an Alfred P. Sloan
Research Fellow and the recipient of three ACM-
SIGMOD ”Test of Time” awards. Hellerstein is the
founding Editor-in-Chief of Foundations and Trends
in Database Systems and has served on steering
committees for ACM SIGMOD and ACM SOCC.
He is a technical advisor at DellEMC, SurveyMon-
key and various startup companies. In 2012, Heller-
stein co-founded Trifacta, Inc., where he currently

serves as Chief Strategy Officer.

