
A Fault-Tolerance Shim for Serverless Computing

Vikram Sreekanti
UC Berkeley

Chenggang Wu
UC Berkeley

Saurav Chhatrapati
UC Berkeley

Joseph E. Gonzalez
UC Berkeley

Joseph M. Hellerstein
UC Berkeley

Jose M. Faleiro
Microsoft Research

Abstract

Serverless computing has grown in popularity in recent
years, with an increasing number of applications being built
on Functions-as-a-Service (FaaS) platforms. By default, FaaS
platforms support retry-based fault tolerance, but this is in-
sufficient for programs that modify shared state, as they can
unwittingly persist partial sets of updates in case of failures.
To address this challenge, we would like atomic visibility of
the updates made by a FaaS application.
In this paper, we present aft, an atomic fault tolerance

shim for serverless applications. aft interposes between a
commodity FaaS platform and storage engine and ensures
atomic visibility of updates by enforcing the read atomic iso-
lation guarantee. aft supports new protocols to guarantee
read atomic isolation in the serverless setting. We demon-
strate that aft introduces minimal overhead relative to ex-
isting storage engines and scales smoothly to thousands of
requests per second, while preventing a significant number
of consistency anomalies.

ACM Reference Format:

Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E.
Gonzalez, Joseph M. Hellerstein, and Jose M. Faleiro. 2020. A Fault-
Tolerance Shim for Serverless Computing. In Fifteenth European
Conference on Computer Systems (EuroSys ’20), April 27–30, 2020,
Heraklion, Greece. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3342195.3387535

1 Introduction

Serverless computing is an emerging area of focus in re-
search [2, 5, 16–22, 35] and industry [3]. Its key attraction is
simplicity: Users upload code and select trigger events (e.g.,
API invocation, file upload), and the cloud provider trans-
parently manages deployment, scaling, and billing for those
programs. Users are charged for resource time used rather
than having to plan and provision resources in advance.

In today’s public clouds, serverless computing most often
refers to Functions-as-a-Service (FaaS). FaaS platforms allow
users to construct applications in high-level languages while
imposing limitations on what those applications can do. One
key limitation is the requirement that programs be stateless—
requests are not guaranteed to be routed to any particular
instance of a program, so developers cannot rely on machine-
local state to handle requests. As a result, applications built
on FaaS infrastructure must either be purely functional or

modify state in a shared storage system like Amazon Web
Services’ S3 or Google Cloud’s Datastore.
FaaS platforms provide some measure of fault tolerance

with retries—systems like AWS Lambda and Azure Functions
automatically retry functions if they fail, and clients typi-
cally will re-issue requests after a timeout. Retries ensure
that functions are executed at-least once, and cloud providers
encourage developers to write idempotent programs [24]
because idempotence logically ensures at-most once execu-
tion. Combining retry-based at-least once execution and
idempotent at-most once execution would seem to guaran-
tee exactly once execution, a standard litmus test for correct
fault handling in distributed systems.
This idempotence requirement is both unreasonable for

programmers—as programswith side-effects are ubiquitous—
and also insufficient to guarantee exactly once serverless
execution. To see why idempotence is insufficient, consider
a function f that writes two keys, k and l , to storage. If f fails
between its writes of k and l , parallel requests might read
the new version of k while reading an old version of l . Even
if f is idempotent—meaning that a retry of f would write
the same versions of k and l—the application has exposed a
fractional execution in which some updates are visible and
others are not. As a result, developers are forced to explicitly
reason about the correctness of their reads in addition to the
idempotence of their applications—an already difficult task.
We propose that in a retry-based fault-tolerance model,

atomicity is necessary to solve these challenges: Either all
the updates made by an application should be visible or none
of them should. Returning to the example above, if f fails
between the writes of k and l , an atomicity guarantee would
ensure that f ’s version of k would not be visible to other
functions without f ’s version of l . Atomicity thus prevents
fractional executions from becoming visible.
A simple solution here is to use serializable transactions.

Functions havewell-defined beginnings and endings, making
a transactional model a natural fit to guarantee atomicity for
FaaS platforms. In reality, each logical request in an applica-
tion will likely span multiple functions—as it would be diffi-
cult to pack a whole application into one function—meaning
transactions should span compositions of functions. However,
strongly consistent transactional systems have well-known
scaling bottlenecks [11, 12] that make them ill-suited for
serverless settings, which must accommodate unbounded
numbers of client arrivals.

1

https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Sreekanti et al.

Instead, we turn to read atomicity, a coordination-free
isolation level introduced in [4]. Intuitively, read atomic iso-
lation guarantees that transactions do not leak partial side
effects to each other, which is the requirement described
above. However, the original implementation of read atomic
isolation—termed RAMP in [4]—makes key limiting assump-
tions that are unreasonable in our setting. First, their storage
system forbids replication, which limits locality and scala-
bility of reads. Second, they assume that every transaction’s
read and write sets are predeclared, which is unreasonable
for interactive applications that make dynamic decisions.

1.1 A Fault-Tolerance Shim

Our goal in this paper is to provide fault tolerance in the
context of widely-used FaaS platforms and storage systems.
To that end, we present aft, an Atomic Fault Tolerance shim
for serverless computing. aft provides fault-tolerance for
FaaS applications by interposing between a FaaS platform
(e.g., AWS Lambda, Azure Functions) and a cloud storage
engine (e.g., AWS S3, Google Cloud BigTable). Updates writ-
ten to storage during a single logical request—which may
span multiple functions—are buffered by aft and atomically
committed at request end. aft enforces the read atomic iso-
lation guarantee, ensuring that transactions never see partial
side effects and only read data from sets of atomic transac-
tions. Given the unsuitability of the original RAMP protocols
for serverless infrastructure, we develop new protocols to
support read atomic isolation over shared storage backends.
Importantly, aft maintains a high measure of flexibility by
only relying on the storage engine for durability.

The contributions of this paper are the following:
• The design of aft, a low-overhead, transparent fault toler-
ance shim for serverless applications that is flexible enough
to work with many combinations of commodity compute
platforms and storage engines.

• A new set of protocols to guarantee read atomic isolation
for shared, replicated storage systems.

• A garbage collection scheme for our protocols that sig-
nificantly reduces the storage overheads of read atomic
isolation.

• A detailed evaluation of aft, demonstrating that it im-
poses low latency penalties and scales smoothly to hun-
dreds of clients and thousands of requests per second,
while preventing consistency anomalies.

2 Background and Motivation

In this section, we describe prior work on read atomicity and
its guarantees (§2.1), and we explain the technical challenges
in providing read atomicity for serverless applications (§2.2).

2.1 Read Atomic Isolation

The read atomic isolation guarantee, introduced by Bailis et
al. in [4], aims to ensure that transactions do not view partial

effects of other transactions. Bailis et al. provide the follow-
ing definition: “A system provides ReadAtomic isolation (RA)
if it prevents fractured reads anomalies and also prevents
transactions from reading uncommitted, aborted, or interme-
diate data.” In this paper, we refer to reads of “uncommitted,
aborted, or intermediate” data as dirty reads. A fractured read
happens when, “... transaction Ti writes versions xm and yn
(in any order, with x possibly but not necessarily equal to y),
[and] Tj [later] reads version xm and version yk , and k < n.”
The read atomic isolation level is a good fit for the server-
less setting because it enforces atomic visibility of updates
without strong consistency or coordination.

2.2 Challenges and Motivation

The protocols introduced in [4] make two assumptions that
are unreasonable for serverless applications: pre-declared
read/write sets and a linearizable, unreplicated, and sharded
storage backend. Relaxing these assumptions enables us to
bring read atomic isolation to the serverless setting but raises
new challenges around consistency and visibility.
Read and Write Sets. [4] requires that each transaction
declares its read and write sets in advance, in order to cor-
rectly ensure that the transaction’s operations adhere to the
definition of read atomicity above. We relax this assump-
tion, allowing requests to issue reads and writes without
restriction, and we develop new read atomic protocols that
allow us to dynamically construct atomic read sets (§3). The
drawback of this flexibility is that clients may be forced to
read data that is more stale than they would have under the
original RAMP protocol, and in rare cases, a request may be
forced to abort because there are no valid key versions for it
to read. We explain this tradeoff in more detail in §3.6.
Shared Storage Backends. The RAMP protocols assume
linearizable, unreplicated, and shared-nothing storage
shards, each of which operate independently. Each shard is
the sole “source of truth” for the set of keys it stores, which
can lead to scaling challenges in skewed workloads. This
design is incompatible with standard cloud applications,
where workloads can often be highly skewed [7, 34] and
require strong durability. To that end, aft offers read
atomic isolation in a shim layer over a durable shared
storage backend without requiring the storage layer to
provide consistency guarantees and partitioning. We avoid
the scaling pitfalls of RAMP by letting all nodes commit
data for all keys. This requires carefully designing commit
protocols for individual nodes (§3.3) and ensuring that
nodes are aware of transactions committed by their peers
(§4). Our coordination-free and fungible node design leads
to a potential ballooning of both data and metadata, which
we address in §5.
Serverless Applications. Serverless applications are typ-
ically compositions of multiple functions. We model each

2

A Fault-Tolerance Shim for Serverless Computing EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Figure 1. A high-level overview of the aft shim in context.

request as a linear composition of one or more functions exe-
cuting on a FaaS platform. aftmust ensure atomic reads and
writes across all functions in the composition, each of which
might be executed on a different machine—this informs our
design. In effect, we must support a “distributed” client ses-
sion as the transaction moves across functions, and we must
ensure that retries upon failure guarantee idempotence. We
discuss these issues in more detail in §3.

3 Achieving Atomicity

In this section, we describe how aft achieves atomic writes
and reads at a single node. We first discuss aft’s API, archi-
tecture, and components (§3.1). We then formally state the
guarantees we make (§3.2); we describe aft’s protocol for
each of the guarantees in §3.3-§3.5. In §4, we discuss howaft
operates in distributed settings.

3.1 Architecture and API

aft offers transactional key-value store API, shown in Ta-
ble 1. We refer to each logical request (which might span
multiple FaaS functions) as a transaction. A new transac-
tion begins when a client calls StartTransaction, and the
transaction is assigned a globally-unique UUID. At commit
time, each transaction is given a commit timestamp based
on the machine’s local system clock. In the rest of the paper,
we refer to this ⟨timestamp,uuid⟩ pair as the transaction’s
ID. aft uses each transaction’s ID to ensure that its updates
are only persisted once, assuring idempotence in the face of
retries—as discussed in §1, guaranteeing idempotence and
atomicity results in exactly once execution semantics. We
do not rely on clock synchronization for the correctness
of our protocols, and we only use system time to ensure
relative freshness of reads. As a result, we need not coor-
dinate to ensure timestamp uniqueness—ties are broken by
lexicographically comparing transactions’ UUIDs.

Each transaction sends all operations to a single aft node.
Within the bounds of a transaction, clients interact with
aft like a regular key-value store, by calling Get(txid,
key) and put(txid, key, value). When a client calls

API Description

StartTransaction()->txid Begins a new transaction and returns
a transaction ID.

Get(txid, key)->value Retrieves key in the context of the
transaction keyed by txid.

Put(txid, key, value) Performs an update for transaction
txid.

AbortTransaction(txid) Aborts transaction txid and discards
any updates made by it.

CommitTransaction(txid) Commits transcation txid and per-
sists its updates; only acknowledges
after all data and metadata has been
persisted.

Table 1. aft offers a simple transactional key-value store API.
All get and put operations are keyed by the ID transaction within
which they are executing.

CommitTransaction, aft assigns a commit timestamp, per-
sists all of the transaction’s updates, and only acknowledges
the request once the updates are durable. At any point during
its execution, if a client calls AbortTransaction, none of its
updates are made visible, and the data is deleted.

Figure 1 shows a high-level overview of the system archi-
tecture. Each aft node is composed of a transaction man-
ager, an atomic write buffer, and a local metadata cache. The
atomic write buffer gathers each transaction’s writes and is
responsible for atomically persisting them at commit time.
The transaction manager tracks which key versions each
transaction has read thus far and is responsible for enforcing
the read atomicity guarantee described later in this section.
aft maintains a Transaction Commit Set storage, which
holds the ID of each committed transaction and its corre-
sponding write set. We defer discussion of fault management
and garbage collection to §4 and §5, respectively.
Algorithm 1 (§3.4) requires access to the list of recently

committed transactions. To avoid metadata fetches on each
read, aft caches the IDs of recently committed transactions
and locally maintains an index that maps from each key to
the recently created versions of that key. When an aft node
starts (e.g., after recovering from failure), it bootstraps itself
by reading the latest records in the Transaction Commit Set
to warm its metadata cache. We discuss how the metadata
cache is pruned by the garbage collection processes in §5.
In addition to a metadata cache, aft has a data cache,

which stores values for a subset of the key versions in the
metadata cache. The data cache improves performance by
avoiding storage lookups for frequently accessed versions;
we measure its effects in §6.2.

aft make no assumptions about the serverless compute
layer it is interactingwith—it simply responds to the API calls
described in Table 1. The only assumption aft makes about
the underlying storage engine is that updates are durable
once acknowledged. aft does not rely on the storage engine

3

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Sreekanti et al.

to enforce any consistency guarantees or to immediately
make keys visible after they are written.

3.2 Definitions

A transaction T ’s ID is denoted by its subscript: transaction
Ti has ID i . We say thatTi is newer thanTj (Ti > Tj) if i > j—
we describe how IDs are compared in §3.1. A key without a
subscript, k , refers to any version of that key;ki is the version
of key k written by transaction Ti . Each key has a NULL
version, followed by many non-null versions. Importantly,
key versions are hidden from users: Clients requests reads
and writes of keys, and aft automatically determines which
versions are compatible with each request.

We define a transaction Ti ’s write set, Ti .writeset , as the
set of key versions written by this transaction. Similarly, each
key version has a cowritten set: If Ti writes ki , ki .cowritten
is the same as Ti .writeset .
As described in §2.1, read atomic isolation requires pre-

venting dirty reads and preventing fractured reads. aft en-
sures two simple properties in addition to read atomicity that
most programmers are familiar with: read-your-writes and
repeatable read. We describe these four properties briefly.
Dirty Reads. To prevent dirty reads, aft guarantees that if
transactionTi reads key version kj written by transactionTj ,
Tj must have successfully committed.
Fractured Reads. To avoid fractured reads, each transac-
tion’s read set must form an Atomic Readset defined below:

Definition 1 (Atomic Readset). Let R be a set of key versions.
R is an Atomic Readset if ∀ki ∈ R,∀li ∈ ki .cowritten, lj ∈
R ⇒ j ≥ i .

In other words, for each key version ki read by transaction
Tj , if Tj also reads a version of key l that was cowritten
with ki (i.e., Tj reads li), we return a version of l that is
no older than li . Consider a scenario where there are two
committed transactions in storage, T1 : {l1} and T2 : {k2, l2},
where the set following the colon denotes the set of key
versions written by the corresponding transaction. If a new
transaction, Tn first requests k and reads k2, a subsequent
read of l must return a version of l that is at least as new as
l2 (i.e., l2 or some newer version). If Tn were to read l1, that
would violate Definition 1 because l is in the cowritten set
of k2, and l1 < l2.
Read Your Writes. Guaranteeing read your writes requires
ensuring that a transaction reads the most recent version
of a key it previously wrote. Say a transaction Ti writes key
version ki1 ; a following read of k should return ki1 . IfTi then
proceeds to write ki2 , future reads will return ki2 .
Repeatable Read. Repeatable read means that a transaction
should view the same key version if it requests the same key
repeatedly: IfTi reads version kj then later requests a read of
k again, it should read kj , unless it wrote its own version of k ,

ki , in the interim. Note that this means the read-your-writes
guarantee will be enforced at the expense of repeatable reads.

3.3 Preventing Dirty Reads

aft implements atomic updates via a simple write-ordering
protocol. aft’s Atomic Write Buffer sequesters all the up-
dates for each transaction. When CommitTransaction is
called, aft first writes the transaction’s updates to stor-
age. Once all updates have successfully been persisted, aft
writes the transaction’s write set, timestamp, and UUID to
the Transaction Commit Set in storage. Only after the Com-
mit Set is updated does aft acknowledge the transaction
as committed to the client and make the transaction’s data
visible to other requests. If a client calls AbortTransaction,
its updates are simply deleted from the Atomic Write Buffer,
and no state is persisted in the storage engine. This protocol
is carefully ordered to ensure that dirty data is never visible.
Crucially, to avoid coordination, aft does not overwrite

keys in place: Each key version is mapped to a unique stor-
age key, determined by its transaction’s ID. This naturally
increases aft’s storage and metadata footprints; we return
to this point in §5, where we discuss garbage collection.
aft prevents dirty reads by only making a transaction’s

updates visible to other transactions after the correct meta-
data has been persisted. As we will see in Section 3.4, aft
only allows reads from transactions that have already com-
mitted by consulting the local committed transaction cache
(see Section 3.1).

For long-running transactions with large update sets,
users might worry that forcing all updates to a single Atomic
Write Buffer means that the update set must fit in memory
on a single machine. However, when an Atomic Write
Buffer is saturated, it can proactively write intermediary
data to storage. The protocols described in this section
guarantee that this data will not be made visible until the
corresponding commit record is persisted. If a aft node fails
after such a write happens but before a commit record is
written, the intermediary writes must be garbage collected;
we discuss this in Section 5.

3.3.1 Atomic Fault Tolerance

This write-ordering protocol is sufficient to guarantee fault
tolerance in the face of application and aft failures. When
an application function fails, none of its updates will be
persisted, and its transaction will be aborted after a timeout.
If the function is retried, it can use the same transaction ID to
continue the transaction, or it can begin a new transaction.
There are two cases for aft failures. If a transaction had

not finished when an aft node fails, we consider its up-
dates lost, and clients must redo the whole transaction. If
the transaction had finished and called CommitTransaction,
we will read its commit metadata (if it exists) during the aft
startup process (§3.1). If we find commit metadata, our write-
ordering protocol ensures that the transaction’s key versions

4

A Fault-Tolerance Shim for Serverless Computing EuroSys ’20, April 27–30, 2020, Heraklion, Greece

are persisted; we can declare the transaction successful. If
no commit record is found, the client must retry.

3.4 Preventing Fractured Reads

In this section, we introduce aft’s atomic read protocol.
We guarantee that after every consecutive read, the set of
key versions read thus far forms an Atomic Readset (Defi-
nition 1). Unlike in [4], we do not require that applications
declare their read sets in advance. We enable this flexibility
via versioning—the client may read older versions because
prior reads were from an earlier timestamp.
aft uses the metadata mentioned in Section 3.1 to en-

sure that reads are correct. As discussed in Section 3.3, a
transaction’s updates are made visible only after its com-
mit metadata is written to storage. Algorithm 1 uses the
local cache of committed transaction metadata and recent
versions of keys to ensure that reads are only issued from
already-committed transactions.

Algorithm 1 shows our protocol for guaranteeing atomic
reads. If a client requests key k , two constraints limit the
versions it can read. First, if ki was cowritten with an earlier
read li , we must return a version, kj , that is at least as new
as ki (j ≥ i). Second, if we previously read some version li ,
the kj return cannot be cowritten with lj | j > i; if it was,
then we should have returned lj to the client earlier, and this
read set would violate read atomicity.

Theorem 1. Given k and R, the Rnew produced by Algo-
rithm 1 is an Atomic Readset, as defined in Definition 1.

Proof. We prove by induction on the size of R.
Base Case. Before the first read is issued, R is empty and

is trivially an Atomic Readset. After executing Algorithm 1
for the first read, Rnew contains a single key, ktarдet , so
Theorem 1 holds; Rnew is an Atomic Readset.

Inductive hypothesis: Let R be the Atomic Readset up
to this point in the transaction, and let ktarдet be the key
version returned by Algorithm 1. We show that Rnew is also
an Atomic Readset. From the constraints described above, we
must show that (1) ∀li ∈ R,ki ∈ li .cowritten ⇒ tarдet ≥ i ,
and (2) ∀ltarдet ∈ ktarдet .cowritten, li ∈ R ⇒ i ≥ tarдet .

Lines 3-5 of Algorithm 1 ensure (1) by construction, as the
lower bound of tarдet is computed by selecting the largest
transaction ID in R that modified k—we never return a ver-
sion that is older than lower . We iterate through versions
of k that are newer than lower , starting with the most re-
cent version first. Lines 13-23 check if each version satisfies
case (2) We iterate through all the cowritten keys of each
candidate version. If any cowritten key is in R, we declare
the candidate version valid if and only if the cowritten key’s
version is not newer than the version in R. If there are no
valid versions, we return NULL.

In summary, kj satisfies case (1) because we consider no
versions older than lower , and it is satisfies case (2) because
we discard versions ofk that conflict with previous reads. □

Algorithm 1 AtomicRead: For a key k , return a key version
kj such that the read set R combined with kj does not violate
Definition 1.
Input: k,R,WriteBu f f er , storaдe,KeyVersionIndex
1: lower B 0 // Transaction ID lower bound.
2: // Lines 3-5 check case (1) of the inductive proof.
3: for li ∈ R do

4: if k ∈ li .cowritten then // We must read kj such that j ≥ i .
5: lower =max(lower , i)

6: // Get the latest version of k that we are aware of.
7: latest B max(KeyVersionIndex[k])
8: if latest == None ∧ lower == 0 then
9: return NULL
10: tarдet B None // The version of k we want to read.
11: candidateVersions B sort(f ilter (KeyVersionIndex[k],kv .tid ≥

lower)) // Get all versions of k at least as new as lower .
12: // Loop through versions of k in reverse timestamp order —

lines 13-23 check case (2) of the inductive proof.
13: for t ∈ candidateVersions .reverse() do
14: valid B True
15: for li ∈ kt .cowritten do

16: if lj ∈ R ∧ j < t then
17: valid B False
18: break
19: if valid then

20: tarдet = t // The most recent valid version.
21: break
22: if tarдet == None then
23: return NULL
24: Rnew B R ∪ {ktarдet }
25: return storaдe .дet(ktarдet),Rnew

3.5 Other Guarantees

aft makes two other guarantees, defined in §3.2: read-your-
writes and repeatable reads. We briefly discuss each.
Read-Your-Writes When a transaction requests a key that
is currently stored in its own write set, we simply return
that data immediately; this guarantees the read-your-writes
property described above. Note that this process operates
outside of the scope of Algorithm 1. Key versions that are
stored in the Atomic Write Buffer are not yet assigned a
commit timestamp, so they cannot correctly participate in
the algorithm. We make this exception because read-your-
writes is a useful guarantee for programmers.
Repeatable Read. Ensuring repeatable read is a corollary
of Theorem 1. As mentioned in 3.2, read-your-writes takes
precedence over repeatable read; therefore, Corollary 1.1
only applies in transactions without intervening writes of k .

Corollary 1.1. Let R be an Atomic Readset for a transac-
tion Ti , and let kj ,Rnew be the results of Algorithm 1. k <
Ti .writeset ∧ ki ∈ R ⇒ ki == kj .

Proof. Given Rnew and kj as the results of Algorithm 1, The-
orem 1 tells us that ∀li ∈ R,ki ∈ li .cowritten ⇒ j ≥ i . Since

5

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Sreekanti et al.

ki ∈ R (and trivially, ki ∈ ki .cowritten), we know that j ≥ i
for the kj returned by Algorithm 1.

Theorem 1 further guarantees that ∀lj ∈ kj .cowritten, li ∈
R ⇒ i ≥ j. Once more, since kj ∈ kj .cowritten and ki ∈ R,
we know that i ≥ j. Combining these two cases, i == j,
meaning Algorithm 1 guarantees repeatable read. □

3.6 Staleness

Our protocol is more flexible than RAMP because it allows
interactively defined read sets. However, it increases the po-
tential for reading stale data because of restriction (2) in the
proof of Theorem 1. If Tr reads li , it cannot later read kj
if lj ∈ kj .cowritten, j > i , because this violates the Defini-
tion 1. The RAMP protocol in [4] avoided this pitfall with
pre-declared read sets—l and k are read at the same time. If
the storage engine returns the same li and kj as above, [4]
repairs this mismatch by forcing a read of lj . However, in
our system, if ki is exposed to the client without knowledge
of the later read of l , we cannot repair the mismatch.
In extreme cases, this can cause transaction aborts. Con-

tinuing our example, ifTr reads li and then requests k , Algo-
rithm 1 will determine that kj is not a valid version for Tr . If
kj is the only version of k , we return NULL because {li ,kj }
does not form Atomic Readset. Note that this equivalent to
reading from a fixed database snapshot—if no versions of l
exist as of time i , a client would read NULL, abort, and retry.

4 Scaling aft

A key requirement for any serverless system is the ability
to scale to hundreds or thousands of parallel clients. The
protocols described in §3 ensure read atomicity for a single
aft replica. In this section, we discuss how we scale aft
while maintaining distributed consistency.

As discussed earlier, we explicitly chose to avoid
coordination-based techniques, as they have well-known
issues with performance and scalability [11, 12]. aft nodes
do not coordinate on the critical path of each transactions.
The write protocol described in §3.3 allows each transaction
to write to separate storage locations, ensuring that different
nodes do not accidentally overwrite each others’ updates.

Allowing each node to commit transactions without coor-
dination improves performance but requires ensuring nodes
are aware of transactions committed by other nodes. Each
machine has a background thread that periodically—every 1
second—gathers all transactions committed recently on this
node and broadcasts them to all other nodes. This thread also
listens for messages from other replicas. When it receives
a new commit set, it adds all those transactions to its local
Commit Set Cache and updates its key version index.
In a distributed setting where we might be processing

thousands of transactions a second, the cost of communicat-
ing this metadata can be extremely high. We now describe an
optimization that reduces aft’s communication overheads.

Algorithm 2 IsTransactionSuperseded: Check whether
transaction Ti has been superseded—if there is a newer ver-
sion of every key version written by Ti .
Input: Ti ,keyVersionIndex
1: for ki ∈ Ti .writeset do
2: latest B k .latest_tid()
3: if latest == i then
4: return False
5: return True

§4.2 discusses fault-tolerance for distributed deployments.
In §4.3, we describe aft’s deployment model.

4.1 Pruning Commit Sets

To avoid communicating unnecessary metadata, we proac-
tively prune the set of transactions that each node multicasts.
In particular, any transaction that is locally superseded does
not need to be broadcast. A transaction Ti is locally super-
seded if, ∀ki ∈ Ti .writeset ,∃kj | j > i—that is, for every key
written by Ti , there are committed versions of those keys
written by transactions newer thanTi . For highly contended
workloads in particular—where the same data is likely to
be written often—this significantly reduces the volume of
metadata that must be communicated between replicas.
Algorithm 2 how we determine if a transaction is super-

seded. Each node’s background multicast protocol checks
whether a recently committed transaction is superseded be-
fore sending it to other replicas. If the transaction is su-
perseded, it is omitted entirely from the multicast message.
Similarly, for each transaction received via multicast, the re-
ceiving node checks to see if it is superseded by transactions
stored locally; if it is, we do not merge it into our the meta-
data cache. Note that we can safely make decisions about
transaction supersedence without coordination because each
transaction receives monotonically increasing sets of keys;
once a transaction is superseded on a particular node, that
node can safely delete the transaction metadata.

4.2 Fault Tolerance

We now turn to guaranteeing fault tolerance for the dis-
tributed protocols described in this section; we consider both
safety and liveness. To guarantee safety, we rely on our write-
ordering protocol, which ensures that each node does not
persist dirty data and that commits are correctly acknowl-
edged. To guarantee liveness, we must further ensure that
if a replica commits a transaction, acknowledges to a client,
and fails before broadcasting the commit, other replicas are
still made aware of the committed data. If other nodes do
not know about the committed transaction, the new data
will be in storage but will never be visible to clients, which
is equivalent to not having committed.

6

A Fault-Tolerance Shim for Serverless Computing EuroSys ’20, April 27–30, 2020, Heraklion, Greece

To this end, distributed deployments of aft have a fault
manager (see Figure 1) that lives outside of the request criti-
cal path. The fault manager receives every node’s committed
transaction set without our pruning optimization applied.
It periodically scans the Transaction Commit Set in storage
and checks for persisted commit records that it has not re-
ceived via broadcast. It notifies all aft nodes of any such
transactions, ensuring that data is never lost once it has been
committed. Thus, if a aft node acknowledges a commit to
the client but fails before broadcasting it to other aft nodes,
the fault manager will read that transaction’s commit record
and ensure that other nodes are aware of the transaction’s up-
dates. The fault manager is itself stateless and fault-tolerant:
If it fails, it can simply scan the Commit Set again.

4.3 Deployment and Autoscaling

aft is deployed using Kubernetes [23], a cluster management
tool that deploys applications running in Docker contain-
ers [14]. Each aft replica as well as the fault manager run in
separate Docker containers and on separate machines. The
fault manager described above is responsible for detecting
failed nodes and configuring their replacements.
An important part of any serverless system is the ability

to autoscale in response to workload changes. Our protocols
for achieving distributed fault tolerance and read atomicity
do not require coordination, and distributed deployments of
aft scale with low overhead, which we will demonstrate in
§6.5. The second aspect of this challenge is making accurate
scaling decisions without user intervention. This is a ques-
tion of designing an efficient policy for choosing to add and
remove nodes from the system. That policy is pluggable in
aft out of scope this paper; we return to it in Section 8.

5 Garbage Collection

In the protocols described thus far, there are two kinds of
data that would grow monotonically if left unchecked. The
first is transaction commit metadata—the list of all transac-
tions committed by aft thus far. The second is set of key
versions. As described in §3.3, each transaction’s updates are
written to unique keys in the storage engine and are never
overwritten. Over time, the overheads incurred from these
sources can grow prohibitive, in terms of both performance
and cost. In §5.1, we describe how each node clears its local
metadata cache, and in §5.2, we describe how we reduce
storage overheads by deleting old data globally.

5.1 Local Metadata Garbage Collection

In §4.2, we introduced Algorithm 2, which enables each node
to locally determine whether a particular transaction has
been superseded because there are newer versions of all keys
the transaction wrote. To locally garbage collect transaction
metadata, a background garbage collection (GC) process
periodically sweeps through all committed transactions in

the metadata cache. For each transaction, the background
process executes Algorithm 2 to check if it is superseded and
ensures that no currently-executing transactions have read
from that transaction’s write set.
If both conditions are met, we remove that transaction

from the Commit Set Cache and evict any cached data from
that transaction. This significantly reduces our metadata
overheads because old transactions are frequently discarded
as new transactions arrive. While supersedence can safely
be decided locally, individual nodes cannot make decisions
about whether to delete key versions because a transaction
running at another node might read the superseded transac-
tion’s writes. As a result, we next describe a global protocol
that communicates with all replicas to garbage collect key
versions. Each individual replica maintains a list of all locally
deleted transaction metadata to aid in the global protocol.

5.2 Global Data Garbage Collection

The fault manager discussed in §4 also serves as a global
garbage collector (GC). We combine these processes because
the fault manager already receives commit broadcasts from
aft nodes, which allows us to reduce communication costs.
The global GC process executes Algorithm 2 to determine
which transactions have been superseded. It generates a list
of transactions it considers superseded and asks all nodes if
they have locally deleted those transactions. If all nodes have
deleted a transaction’s metadata, we can be assured that no
running transactions will attempt to read the deleted items.
Nodes respond with the transactions they have deleted, and
when the GC process receives acknowledgements from all
nodes1, it deletes the corresponding transaction’s writes and
commit metadata. We allocate separate cores for the data
deletion process, which allows us to batch expensive delete
operations separate from the GC process.

5.2.1 Limitation: Missing Versions

There is one key shortcoming to this protocol. Recall from
Section 3.6 that aft returns NULL if there are no key versions
in the valid timestamp range from Algorithm 1. This problem
can be exacerbated by our garbage collection protocol.

As mentioned earlier, our local metadata GC protocol will
not delete a transaction Ti if a running transaction, Tj , has
read from Ti ’s write set. However, since we do not know
each running transaction’s full read set, we might delete
data that would be required by a running transaction in the
future. Consider the following transactions and write sets:
Ta : {ka},Tb : {lb },Tc : {kc , lc },a < b < c . Say a transaction
Tr first reads ka then requests key l . The GC process will not
delete Ta because Tr has read from it and is uncommitted.
However, it might delete Tb if there are no restrictions on

1Note that knowing all nodes present in the system is a traditional dis-
tributed systems membership problem, which requires coordination; we
currently rely on Kubernetes to provide this information.

7

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Sreekanti et al.

it; when Tr attempts to read l , it will find no valid versions
since lc is invalid, and Algorithm 1 will return NULL.
Long-running transactions accessing frequently updated

keys are particularly susceptible to this pitfall. These transac-
tions might be forced to repeatedly retry because of missing
versions, significantly increasing latencies. In practice, we
mitigate this issue by garbage collecting the oldest trans-
actions first. In our evaluation, we did not encounter valid
versions of keys had been deleted by the GC process.

6 Evaluation

In this section, we present a detailed evaluation of aft. A
key design goal for aft is the flexibility to run on a variety of
cloud storage backends, so we implemented aft over AWS
S3, a large scale object storage system, and AWS DynamoDB,
a cloud-native key-value store. We also run aft over Redis
(deployed via AWS ElastiCache) because it offers best-case
performance for a memory-speed KVS despite the fact that
it is not an autoscaling storage engine. All experiments use
Redis in cluster mode with 2 shards and 2 nodes per shard,
unless stated otherwise.

First, we measure aft’s performance overheads and con-
sistency benefits by comparing it to a variety of other server-
less storage architectures (§6.1). We then evaluate aspects of
the system design: read caching (§6.2), scalability (§6.5), and
garbage collection (§6.6). Finally, we measure aft’s ability
to tolerate and recover quickly from faults (§6.7).

aft is implemented in just over 2,500 lines of Go and 700
lines of Python and runs on top of Kubernetes [23]. The
majority of the aft protocols described in this paper are
implemented in Go. We use Python to spin up and configure
Kubernetes clusters as well as to detect node failures in
Kubernetes and to reconfigure the cluster in such an event.
We use a simple stateless load balancer implemented in Go
to route requests to aft nodes in a round-robin fashion. All
experiments were run in the us-east-1a AWS availability
zone (AZ). Each aft node ran on a c5.2xlarge EC2 instance
with 8vCPUs (4 physical cores) and 16GB of RAM.

6.1 aft Overheads

We first measure the performance overheads introduced by
aft relative to interacting with cloud storage engines with-
out aft. To isolate the overheads introduced by Function-
as-a-Service platforms, we first measure IO cost with and
without aft interposed (§6.1.1); we then measure end-to-end
latencies and consistency anomalies for transactions running
on AWS Lambda over a variety of storage engines (§6.1.2).

6.1.1 IO Latency

We first compare the cost of writing data directly to Dy-
namoDB and to the cost of the same set of writes using aft’s
commit protocol (§3.3). To isolate our performance over-
heads, we issue writes from a single thread in a VM rather

1

10

100

1000

1 write 5 writes 10 writes

L
a
te

n
c
y
 (

m
s
)

10.2 9.9

3.03 3.08

17.2 15.3

5.45
7.49 13.4

10.9
14.9

4.65

28.6

18.3

580

11.7 17.6

12.3

35.6

6.82

56.9

25.5

696

15.2

Aft Sequential
Aft Batch

DynamoDB Sequential
DynamoDB Batch

Figure 2. Themedian (box) and 99th percentile (whisker) latencies
across 1,000 sequential requests for performing 1, 5, and 10 writes
from a single client to DynamoDB and aft with and without batch-
ing. aft’s automatic batching allows it to significantly outperform
sequential writes to DynamoDB, while its commit protocol imposes
a small fixed overhead relative to batched writes to DynamoDB.

than using a FaaS system. We measure four configurations.
Our two baselines write directly to DynamoDB, one with
sequential writes and the other with batching. Batching pro-
vides best-case performance, but interactive applications can
rarely batch multiple writes. aft takes advantage of batched
writes by default in its commit protocol—all client updates
sent to the Atomic Write Buffer are written to storage in a
single batch when possible. We also measure two configura-
tions over aft—one where the client sends sequential writes
to aft, and one where the client sends a single batch.
Figure 2 shows the latency for performing 1, 5, and 10

writes. As expected, the latency of sequential writes to
DynamoDB increases roughly linearly with the number
of writes, and the 99th percentile latency increases super-
linearly. The latency of batched writes to DynamoDB on the
other hand scales much better, increasing by about 2× from
1 write to 10.

Both aft configurations take advantage of batched writes.
aft Sequential’s performance scales better than DynamoDB
Sequential’s, but latency increases about 70% from 1 write
to 10 writes—this is primarily due to the cost and network
variance incurred by issuing sequential requests from the
client to aft. The aft Batch bar measures a client who
sends all writes in a single request to aft, leading to much
more consistent performance. We observe a fixed difference
of about 6ms between the DynamoDB Batch and the aft
Batch measurements—this is (1) the cost of the extra network
overhead imposed by shipping data to aft, and (2) the cost
of writing the extra commit record our protocol requires.

Takeaway: For interactive applications that perform se-
quential writes, aft significantly improves IO latency by au-
tomatically batching updates.

8

A Fault-Tolerance Shim for Serverless Computing EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0

100

200

300

400

500

600

700

800

S3 DynamoDB Redis

L
a
te

n
c
y
 (

m
s
)

199
245

649

742

81.1 69.1 68.8

351

137 141

33.6 39.8

72.5 87.8

Transactional
Plain

Aft

Figure 3. The end-to-end latency for executing a transaction with
two sequential functions, each of which does 1 write and 2 reads
(6 IOs total) on AWS S3, AWS DynamoDB, and AWS ElastiCache
(Redis). Numbers are reported from 10 parallel clients, each running
1,000 transactions.

Storage

Engine

Consistency

Level RYW Anomalies FR Anomalies

aft Read Atomic 0 0
S3 None 595 836

DynamoDB None 537 779
DynamoDB Serializable 0 115

Redis

Shard
Linearizable 215 383

Table 2. A count of the number of anomalies observed under
Read Atomic consistency for DynamoDB, S3, and Redis over the
10,000 transactions run in Figure 3. Read-Your-Write (RYW) anom-
alies occur when transactions attempt to read keys they wrote and
observe different versions. Fractured Read (FR) anomalies occurs
when transactions read fractured updates with old data (see §2.1).
aft’s read atomic isolation prevents up to 13% of transactions from
observing anomalies otherwise allowed by DynamoDB and S3.

6.1.2 End-to-End Latency

Next, we measure the end-to-end latency of executing trans-
actions on AWS Lambda with and without aft interposed
between the compute and storage layers. We evaluate three
storage systems: AWS S3, AWS DynamoDB, and Redis. Each
transaction is composed of 2 functions, which perform one
write and two reads each; all reads and writes are of 4KB
objects. We chose small transactions because they reflect
many real-world CRUD applications and because they high-
light aft’s overheads; we use this workload in the rest of our
evaluation. We measure performance and consistency anom-
alies with a lightly skewed workload (a Zipfian coefficient of
1.0). Figure 3 and Table 2 show our results. The bars labeled
“Plain” in Figure 3 represent end-to-end transaction latencies
measured by running functions which write data directly
to the respective storage engines. When executing requests
without aft, we detect consistency anomalies by embedding
the same metadata aft uses—a timestamp, a UUID, and a

cowritten key set—into the key-value pairs; this accounts for
about an extra 70 bytes on top of the 4KB payload.
Consistency. aft’s key advantage over DynamoDB, Redis,
and S3 is its read atomic consistency guarantee. We mea-
sure two types of anomalies here. Read-Your-Write (RYW)
anomalies occur when a transaction writes a key version and
does not later read the same data; Fractured Read (FR) anom-
alies occur when a read violates the properties described in
§2.1—these encompass repeatable read anomalies (see §3.5).
Table 2 reports the number of inconsistencies observed in
the 10,000 transactions from Figure 3. Vanilla DynamoDB
and S3 have weak consistency guarantees and incur similar
numbers of anomalies—6% of transactions experience RYW
anomalies, and 8% experience FR anomalies.
Each Redis shard is linearizable but no guarantees are

made across shards. This consistency model combined with
low latency IO enables it to eliminate many anomalies by
chance, as reads and writes interfere with each other less of-
ten. Nonetheless, we still found anomalies on 6% of requests.
We also evaluate DynamoDB’s transaction mode [13],

which provides stronger consistency than vanilla Dy-
namoDB. In contrast to aft’s general purpose transactions,
DynamoDB supports transactions that are either read-only
or write-only. All operations in a single transaction either
succeed or fail as a group; however, DynamoDB’s transac-
tion mode does not to guarantee atomicity for transactions
that span multiple functions—each transaction is only a
single API call. To accommodate this model, we modified
the workload slightly: The first function in the request does
a two-read transaction, and the second function does a
two-read transaction followed by a two-write transaction.
We grouped all writes into a single transaction to guarantee
that the updates are installed atomically rather than being
spread across two separate transactions—this reduces the
flexibility of the programming model but is more favorable
to DynamoDB’s transactional guarantees.

This setup avoids RYWanomalies because all of a request’s
writes are done in a single transaction. However, reads are
spread across two transactions in two different functions,
so we still encounter FR anomalies on over 1% of requests.
DynamoDB serializes all transactions, so many writes will
be executed between the two read transactions, making our
application likely to read newer data in the second read
transaction that conflicts with data read in the first.
Performance. aft imposes the highest overhead over S3—
25% slower than baseline at median and 14% at 99th per-
centile. S3 is a throughput-oriented object store that has high
write latency variance, particularly for small objects [9, 40],
and even in the aft-less configuration, S3 is 4 to 10× slower
than other storage systems. Our design writes each key ver-
sion to a separate storage key; this is poorly suited to S3,
which has high random IO latencies and is sensitive to data

9

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Sreekanti et al.

1

10

100

1000

z=1.0 z=1.5 z=2.0

L
a
te

n
c
y
 (

m
s
)

78.1 69.9 63.6
44.9 42.7

158 147 139
99.5 92.0

98.7
68.6 60.3

45.0 42.7

723

145 132
98.5 97.5

116

67.6 57.8
45.7 44.4

1140

149 132
99.9 92.5

DynamoDB Txns
Aft-D No Caching

Aft-D Caching

Aft-R No Caching
Aft-R Caching

Figure 4. End-to-end latency for aft over DynamoDB (aft-D)
and Redis (aft-R) with and without read caching enabled, as well as
DynamoDB’s transactionmode.We vary the skew of the data access
distribution to demonstrate the effects of contended workloads.
Caching improves aft-D’s performance by up to 15%, while it has
little effect on aft-R’s performance. DynamoDB’s transactionmode
suffers under high contention due to large numbers of repeated
retries.

layouts. For this reason, we do not consider S3 in the rest of
our evaluation. We return to this point in §8.
aft is able to match DynamoDB Plain’s performance. In

this workload, each function does one write, so when writ-
ing directly from Lambda to DynamoDB, function cannot
take advantage of write batching. On the other hand, aft’s
use of batching offsets the cost of its extra commit metadata
write. With transaction mode enabled, DynamoDB proac-
tively aborts transactions in the case of conflict, so the re-
ported latencies include retries. aft improves median per-
formance over DynamoDB’s transaction mode by 18% at
median and by 2.5× at the 99th percentile.
Finally, aft imposes a 20% latency penalty compared to

Redis Plain because we are not able to take advantage of
batching. While Redis supports a MSET operation to write
multiple keys at once, that operation can only modify keys
in a single shard. Since requests can write arbitrary data,
we are not guaranteed to modify keys in a single shard and
cannot consistently batch updates.

Takeaway: aft offers performance that is competitive with
state-of-the-art cloud storage engines while also eliminating a
significant number of anomalies.

6.2 Read Caching & Data Skew

We now turn our attention to aft’s data caching, its effect
on performance, and its interaction with access distribution
skewness. In this experiment, we use the same workload
as in Section 6.1.2—a 2-function transaction with 2 reads
and 1 write per function. Figure 4 shows the median and
99th percentile latencies for aft deployed over DynamoDB
(aft-D) and Redis (aft-R) with and without caching. We
also measure DynamoDB’s transaction mode; we omit any
configurations that do not provide transactions in some form.

20

40

60

80

100

120

140

0% 20% 40% 60% 80%100% 0% 20% 40% 60% 80%100%

Dynamo Redis

L
a
te

n
c
y
 (

m
s
)

56.5 58.1 59.3 60.8 61.0 58.1

130
135

122 123 123 124

40.4 42.6 42.2 42.1 43.1 42.2

94.3
100 100

94.2 96.7 94.1

Figure 5. Median and 99th percentile latency for aft over Dy-
namoDB and Redis as a function of read-write ratio, from transac-
tions with 0% reads to transactions with 100% reads. aft over Redis
should little variation, while our use of batching over DynamoDB
leads to small effects based on read-write ratios.

We measured 3 Zipfian distributions: 1.0 (lightly contended),
1.5 (moderately contended), and 2.0 (heavily contended).

Interestingly, we find that aft-R’s performance varies
very little across all configurations. Read caching does not
improve performance because the cost of fetching a 4KB
payload from Redis is negligible compared to invoking a
Lambda function and executing our read and write protocols.
While recent work has shown that Redis’ performance can
suffer under high contention [38], this experiment measures
latencies and thus does not saturate Redis’s capacity.

With caching, aft-D’s performance improves by 10% for
the lightly contended workload and up to 17% for the heavily
contended workload. As distribution skew increases, so does
the likelihood that we have a valid key version cached, thus
improving performance.
Finally, we measure DynamoDB’s transaction mode. In-

terestingly, we find that for Zipf=1.0, DynamoDB’s transac-
tional performance improves relative to Figure 3 in §6.1.2.
This is because we use a larger dataset in this experiment
(100,000 keys vs 1,000 keys), so the lightly contended work-
load is less likely to encounter data access conflicts. As we
increase contention, performance degrades significantly, and
for the most contended workload, aft-D is 2× faster at me-
dian and 7.6× better at the tail.

Takeaway: Introducing read caching unlocks significant
performance improvements for aft, particularly for skewed
access distributions.

6.3 Read-Write Ratios

Next, we look at the effects of read-write ratios within a
single transaction. Thus far, our workload has consisted of
transactions with only 4 writes and 2 reads split across 2
functions. In this section, we will use longer transactions
with 10 total IOs and vary the percentage of those IOs that
are reads from 0% to 100%.

10

A Fault-Tolerance Shim for Serverless Computing EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0

50

100

150

200

250

300

350

400

450

1 2 4 6 8 10 1 2 4 6 8 10

Dynamo Redis

L
a
te

n
c
y
 (

m
s
)

43.0

70.3

123

175

221

270

101

141

216

280

334

403

27.0
49.8

96.6

144

191

239

69.6

115

176

238

291

352

Figure 6. Median and 99th percentile latency for aft over Dy-
namoDB and Redis as a function of transaction length, from 1
function (3 IOs) to 10 functions (30 IOs). Longer transactions mask
the overheads of aft’s protocols, which play a bigger role in the
performance of the shorter transactions.

Figure 5 shows our results. With aft running over Dy-
namoDB, performance is largely consistent with less than
10% variance. There is a slight increase in median latency
from 0% reads to 80% reads. At 0% reads, there are two API
calls to DynamoDB—one to write the batch of updates, and
the other to write the transaction’s commit record. As we
add reads, each individual read results in a separate API
call, resulting in a slight increase in latency. At 100% reads,
we remove the batch write API call, leading to a small dip
in latency. 0% and 20% reads (i.e., 10 and 8 writes, respec-
tively) have higher tail latencies because the larger numbers
of writes increase the chance that the batch writes hit slower
shards in the underlying storage engine—this is similar to
the differences in tail latencies seen in Figure 2.

aft over Redis shows very little variation in performance
across all read-write ratios. This is because Redis (in cluster
mode) does not support writing multiple objects at once, and
the system treats reads and writes roughly uniformly. As a
result, for all configurations, we make 11 API calls—10 for
the IOs and 1 for the final commit record.

Takeaway: aft maintains consistent performance across
a variety of read-write ratios with minor variations based on
the characteristics of the underlying storage system.

6.4 Transaction Length

In this experiment, we study the performance impact of
transaction length. We vary transactions from 1 function to
10 functions, where each function consists of 2 reads and 1
write. Figure 6 shows our results.

aft scales roughly linearly with transaction length over
both DynamoDB and Redis. As in previous experiments,
aft’s use of DynamoDB’s batching capabilities means that
the overhead of increased writes is masked with the batch
update operation. As a result, 10-function transactions are
only 6.2× slower than 1-function transactions—intuitively,
this corresponds to the fact that 2

3 (or 67%) of our API calls

0

100

200

300

400

500

600

700

800

900

 0 10 20 30 40 50

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)

Number of Clients

Aft (DynamoDB)
Aft (Redis)

Figure 7. The throughput of a single aft node as a function of
number of simultaneous clients issues requests to it. We can see
a single node scales linearly until about 40 clients for DynamoDB
and 45 clients for Redis, at which point, the throughput plateaus.

are reads, which scale linearly, while the remaining writes
are batches into one API call.

As before, Redis requires separate API calls for each write
operation and thus 10-function transactions are 8.9× slower
than 1-function transactions. The remaining difference is
because the cost of writing an extra commit record to stor-
age as a fixed cost is a large portion of the operating time
of a 1-function transaction but a much smaller portion for
10-function transactions. DynamoDB is 59% slower than
Redis for 1-function transactions but only 13% slower for 10-
function transactions. In the rest of our experiments, we use
2-function transactions because they more clearly highlight
our overheads than longer transactions do.

Takeaway: aft scales linearly with transaction length and
is able to mask update and commit overheads for longer trans-
actions.

6.5 Scalability

In this section, we evaluate aft’s scalability relative to the
number of parallel clients. We first measure the number of
clients a single aft node can support in §6.5.1. We then
measure the overhead of the distributed protocols in §4 by
measuring throughput in distributed deployments.

6.5.1 Single-Node Scalability

In this section, wemeasure the number of parallel clients that
a single aft node can support. We run the same 2-function,
6-IO transactions as before under the moderate contention
level (Zipf=1.5), and we we vary the number of clients from
1 to 50. Each client makes 1,000 requests by synchronously
invoking the transaction, waiting for a response, and then
triggering another transaction. Figure 7 shows our results
with aft deployed over DynamoDB and Redis.

We find that aft scales linearly until 40 and 45 clients for
DynamoDB and Redis, respectively. At this point, contention
for shared data structures causes aft’s throughput to plateau.
Similar to previous experiments, aft over Redis achieves

11

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Sreekanti et al.

0

2000

4000

6000

8000

10000

12000

14000

 0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)

Number of Clients

Aft (DynamoDB)
Aft (Dynamo) Ideal

Aft (Redis)
Aft (Redis) Ideal

Figure 8. aft is able to smoothly scale to hundreds of parallel
clients and thousands of transactions per second while deployed
over both DynamoDB and Redis. We saturate either DynamoDB’s
throughput limits or AWS Lambda’s concurrent function inovcation
limit while scaling within 90% of ideal throughput.

better performance than aft over DynamoDB. Because Re-
dis offers significantly lower IO latencies, each transaction
completes faster (see Figure 3). Our clients synchronously
invoke each Lambda, so the reduced latency directly trans-
lates to better throughput. At peak, aft over Redis is able
to achieve 900 transaction per second, while aft over Dy-
namoDB achieves just under 600 transaction per second.

Takeaway: A single aft node is able to scale linearly to
over 40 clients (600 tps), demonstrating the low overhead of
our read atomic protocols.

6.5.2 Distributed Scalability

We now turn to measuring aft’s ability to scale smoothly
for multi-node deployments. Based on the results in §6.5.1,
we ran 40 clients per aft node and progressively scaled up
the number of nodes. Figure 8 shows our results.

Deployed over DynamoDB, we find that aft is able to scale
seamlessly to 8,000 transactions per second for 640 parallel
clients. aft scales at slope that is within 90% of the ideal slope,
where the ideal throughput is the number of nodesmultiplied
by a single node’s throughput. We originally intended to
demonstrate scalability to a thousand parallel clients, but we
were restricted by AWS DynamoDB’s resource limits, which
would not let us scale beyond what is shown.

With Redis, we observe that aft is similarly able to scale
linearly. Similar to §6.5.1, aft over Redis has a higher ag-
gregate throughput due to lower IO latencies. Nonetheless,
throughput remains within 90% of ideal. Throughput for
640 clients plateaus not because of aft overheads but be-
cause we were limited by the number of concurrent function
invocations supported by AWS Lambda.
Note that we manually configured both storage systems

with the appropriate resources. We chose to disable Dy-
namoDB’s autoscaling because the goal of this experiment
was not to measure efficacy of their autoscaling policy. In
general, however, DynamoDB’s autoscaling support makes it

0

100

200

300

400

500

600

700

800

900

 0 10 20 30 40 50 60 70 80

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)

Time (s)

GC Throughput
No GC Throughput

Transactions Deleted

Figure 9. Throughput for aft over DynamoDB with and with-
out global data garbage collection enabled. The garbage collection
process has no effect on throughput while effectively deleting trans-
actions at the same rate aft processes them under a moderately
contended workload (Zipf=1.5).

well-suited to serverless applications, while Redis is a fixed-
deployment system with high reconfiguration overheads.

Takeaway: aft is able to efficiently scale to thousands of
transactions per second and hundreds of parallel clients within
90% of ideal throughput.

6.6 Garbage Collection Overheads

In this experiment, we quantify the overhead of enabling
aft’s global garbage collection (§5.2). We run a single aft
node with 40 clients and measure throughput with garbage
collection enabled and disabled. We also measured the num-
ber of transactions deleted per second when garbage collec-
tion is enabled. Figure 9 shows our results.
There is no discernible difference between throughput

with garbage collection enabled and disabled. The bulk of
the work related to determining transaction supersedence
happens periodically on each node to reduce metadata over-
heads (see §4.1). As a result, the global GC protocol simply
collects lists of superseded transactions from all aft nodes
and deletes transactions that all nodes consider superseded.
The cost of this garbage collection process is that we re-

quire separate cores that are dedicated to deleting old data.
However, the resources allocated to garbage collection are
much smaller than the resources required to run the system:
For the four cores we used to run the aft node, we only
required 1 core to delete transactions.

Takeaway: aft’s local metadata garbage collection enables
efficient global deletion of superseded data with no effect on
system throughput and at reasonable added cost.

6.7 Fault Tolerance

Finally, in this experiment, we measure aft’s performance
in the presence of failures. We know from our protocols and
prior experiments that the behavior and performance of aft
nodes is independent. In this experiment, we are looking to
measure the effect of a node failure and the cost of recovering

12

A Fault-Tolerance Shim for Serverless Computing EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0

500

1000

1500

2000

2500

3000

 0 10 20 30 40 50 60 70 80 90

Node fails Node joins

T
h
ro

u
g
h
p
u
t
(t

x
n
/s

)

Time (seconds)

Figure 10. aft’s fault manager is able to detect faults and allo-
cate new resources within a reasonable time frame; the primary
overheads we observe are due to the cost of downloading Docker
containers and warming up aft’s metadata cache. aft’s perfor-
mance does not suffer significantly in the interim.

from failure—that is how long it takes for a node to cold start
and join the system. Figure 10 shows our results.

We run aftwith 4 nodes and 200 parallel clients and termi-
nate a node just before 10 seconds. We see that throughput
immediately drops about 16%. Within 5 seconds, the aft
management process determines that a node has failed, and
it adds assigns a new node to join the cluster. Note that we
pre-allocate “standby” nodes to avoid having to wait for new
EC2 VMs to start, which can take up to 3 minutes.
Over the next 45 seconds, this new node downloads the

aft Docker container and updates its local metadata cache.
Just after 60 seconds, the node joins the cluster, and through-
put returns to pre-failure peaks within a few seconds. Note
that throughput is on a slight downward slope between 10
and 60 seconds—this is because the remaining three nodes
are saturated, and the queue of pending requests grows, caus-
ing throughput to decrease.
Note that the overheads involved in starting a new node

can be further mitigated by downloading containers in ad-
vance and by maintaining standbys nodes with warm meta-
data caches. These are engineering tasks that are not funda-
mental to the design of aft.
Takeaway: aft’s fault management system is able to detect

and recover from faults in a timely fashion.

7 Related Work

Atomic Reads. The RAMP protocols in [4] are the only
prior work we are aware of that explicitly addresses read
atomic isolation. However, another coordination-free con-
sistency model that guarantees atomic reads atomic is trans-
actional causal consistency (TCC), implemented in systems
like Occult [27] and Cure [1]. In addition to atomic reads,
causal consistency guarantees that reads and writes respect
Lamport’s “happens-before” relation [25]. In general, causal
systems must track each transaction’s read set in addition

to its write set, which adds a metadata overhead that read
atomicity does not require.

Two key aspects distinguish our approach from prior work.
First, [4], [27], and [1] achieve read atomicity at the storage
layer, whereas aft is a shim above the storage engine. This
allows for more flexibility as aft users can pick any key-
value storage system, while still maintaining consistency.
Second, the mechanisms used to achieve read atomic isola-
tion in [27] and [1] rely on fixed node membership at the
storage layer, which we cannot assume in an autoscaling
serverless environment. The read atomic isolation protocols
in this paper do not require knowledge of node membership.
aft only requires membership for garbage collection of data,
which happens off the critical path of transaction processing.
Multi Versioning. The idea of multi-version concurrency
control and storage dates back to the 1970s [8, 31]. The orig-
inal Postgres storage manager [33] introduced the notion of
maintaining a commit log separate from data version stor-
age, an idea we adopted in aft. More recently, a variety of
systems have proposed and evaluated techniques for multi-
version concurrency [15, 28, 39]. These systems all offer some
form of strong transactional consistency (e.g., snapshot iso-
lation, serializability), which aft and the RAMP protocols
do not. Similar to the causal approaches, these systems also
enforce consistency in the storage system, while aft offers
consistency over a variety of storage backends.
Fault Tolerance. There is a rich literature on fault tolerance
for distributed systems (see, e.g., [30, 36]). Many techniques
are conceivably applicable in the FaaS context, from check-
point/restart of containers or virtual machines (e.g. [26]) to
log- (or “lineage-”) based replay (e.g. [37]) to classical pro-
cess pairs (e.g., [6]). Our approach is based on the simple
retry-from-scratch model used by existing serverless plat-
forms such as AWS Lambda and Google Cloud Functions,
and appropriate to short-lived interactive (“transactional”)
tasks. As noted above, existing FaaS platforms attempt to
offer at-least-once execution semantics, but may expose frac-
tional writes from failed function attempts. aft’s built-in
atomicity and idempotence guarantees allow a simple retry
scheme to achieve exact-once semantics that provides both
safety and liveness in the face of failures.

8 Conclusion and Future Work

In this paper, we presented aft, a low-overhead fault-
tolerance shim for serverless computing. aft interposes
between commodity FaaS platforms and key-value stores to
achieve fault-tolerance by transparently guaranteeing read
atomic isolation [4]. We develop new distributed protocols
for read atomicity, which build on shared storage for high
throughput and do not require pre-declared read and write
sets. aft adds minimal overhead to existing serverless
architectures and scales linearly with the size of the cluster,
while offering exactly-once execution in the face of failures.

13

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Sreekanti et al.

While aft brings fault tolerance guarantees to FaaS pro-
grammers for the first time, we believe there are a variety of
interesting avenues for future work.
Efficient Data Layout. As observed in §6.1.2, aft’s key-
per-version data layout works well over DynamoDB and
Redis, which are optimized for small key access, but performs
poorly over S3. In settings with high-volume updates, we
would like to optimize data layouts for a system like S3.
aft’s design allows us to explore techniques for high-volume,
write heavy workloads, inspired by log-structured merge
trees [29] and log-structured file systems [32], where writes
are appended as efficiently as possible, and re-organized
offline into read-optimized data structures.
Autoscaling Policies. As a shim layer, aft allows us to au-
toscale fault-tolerance infrastructure independently of both
storage and compute. Policies for efficient and accurate au-
toscaling decisions are a natural next step. There are two
aspects to this problem. From a functionality perspective,
we must accurately measure system load per node and effec-
tively manage cluster size to meet application requirements.
In terms of scheduling, economic models and SLA design
may offer a useful angle for engineering the interplay of
potentially unbounded platform costs and user behavior.
Data and Cache Partitioning. Partitioned caching is a
well-studied technique in large-scale web systems [10]. Naïve
caching schemes like aft’s will result in every node caching
largely the same data, particularly for skewed workloads. It
may be preferable to intelligently partition the space of keys
across nodes [10] to make better use of global memory while
maintaining load balance. Doing this in aftwould mean that
each transaction would interact with multiple aft nodes,
raising interesting new design challenges for maintaining
read atomic consistency.
Recovery for Long-Running FaaS Programs As dis-
cussed in §7, our retry approach could be augmented
with recovery-based techniques such as checkpointing
and logging/lineage, so that long-running FaaS programs
need not restart from scratch. These mechanisms are not
inconsistent with our atomicity design, but details need to
be worked out—e.g., to ensure that metadata management
and garbage are handled correctly upon recovery.

The design of aft as a disaggregated shim layer enables us
to study these topics in the context of commodity serverless
infrastructure–even as the computing and storage platforms
evolve.

References

[1] Deepthi Devaki Akkoorath, Alejandro Z Tomsic, Manuel Bravo, Zhong-
miao Li, Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc
Shapiro. Cure: Strong semantics meets high availability and low
latency. In 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS), pages 405–414. IEEE, 2016.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards
high-performance serverless computing. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18), pages 923–935, 2018.

[3] Aws Lambda - case studies. https://aws.amazon.com/lambda/
resources/customer-case-studies/.

[4] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion
Stoica. Scalable atomic visibility with ramp transactions. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 27–38, New York, NY, USA, 2014. ACM.

[5] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,
Aleksander Slominski, et al. Serverless computing: Current trends and
open problems. In Research Advances in Cloud Computing, pages 1–20.
Springer, 2017.

[6] Joel Bartlett, Jim Gray, and Bob Horst. Fault tolerance in tandem
computer systems. In The Evolution of Fault-Tolerant Computing, pages
55–76. Springer, 1987.

[7] Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query
processing. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 212–223. ACM,
2014.

[8] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency
control—theory and algorithms. ACM Trans. Database Syst.,
8(4):465–483, December 1983.

[9] Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann,
and Tim Kraska. Building a database on s3. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’08, pages 251–264, New York, NY, USA, 2008. ACM.

[10] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, Scott Shenker, et al.
Web caching and zipf-like distributions: Evidence and implications. In
Ieee Infocom, volume 1, pages 126–134. INSTITUTE OF ELECTRICAL
ENGINEERS INC (IEEE), 1999.

[11] E. Brewer. Cap twelve years later: How the “rules” have changed.
Computer, 45(2):23–29, Feb 2012.

[12] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. Paxos
made live: an engineering perspective. In Proceedings of the twenty-
sixth annual ACM symposium on Principles of distributed computing,
pages 398–407. ACM, 2007.

[13] Amazon dynamodb transactions: How it works - amazon dy-
namodb. https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/transaction-apis.html.

[14] Enterprise application container platform | docker. https://www.docker.
com.

[15] Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multiver-
sion concurrency control. Proc. VLDB Endow., 8(11):1190–1201, July
2015.

[16] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From lap-
top to Lambda: Outsourcing everyday jobs to thousands of transient
functional containers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 475–488, 2019.

[17] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. Encoding, fast and slow: Low-
latency video processing using thousands of tiny threads. In 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 363–376, Boston, MA, 2017. USENIX Association.

[18] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,

14

https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transaction-apis.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transaction-apis.html
https://www.docker.com
https://www.docker.com

A Fault-Tolerance Shim for Serverless Computing EuroSys ’20, April 27–30, 2020, Heraklion, Greece

pages 3–18. ACM, 2019.
[19] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann

Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. Serverless computing: One step forward, two steps back. In CIDR
2019, 9th Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 13-16, 2019, Online Proceedings, 2019.

[20] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Car-
reira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. Cloud programming sim-
plified: A Berkeley view on serverless computing. Technical Report
UCB/EECS-2019-3, EECS Department, University of California, Berke-
ley, Feb 2019.

[21] Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
Occupy the cloud: Distributed computing for the 99%. CoRR,
abs/1702.04024, 2017.

[22] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage
for serverless analytics. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pages 427–444, 2018.

[23] Kubernetes: Production-grade container orchestration. http://
kubernetes.io.

[24] Make a lambda function idempotent. https://aws.amazon.com/
premiumsupport/knowledge-center/lambda-function-idempotent/.

[25] Leslie Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[26] Wubin Li and Ali Kanso. Comparing containers versus virtual ma-
chines for achieving high availability. In 2015 IEEE International Con-
ference on Cloud Engineering, pages 353–358. IEEE, 2015.

[27] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi,
Nathan Bronson, and Wyatt Lloyd. I can’t believe it’s not causal! scal-
able causal consistency with no slowdown cascades. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17), pages 453–468, Boston, MA, March 2017. USENIX Association.

[28] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast serial-
izable multi-version concurrency control for main-memory database
systems. In Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’15, pages 677–689, New York,
NY, USA, 2015. ACM.

[29] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
The log-structured merge-tree (lsm-tree). Acta Informatica, 33(4):351–
385, 1996.

[30] Brian Randell. System structure for software fault tolerance. Ieee
transactions on software engineering, pages 220–232, 1975.

[31] David Patrick Reed. Naming and synchronization in a decentralized
computer system. PhD thesis, Massachusetts Institute of Technology,
1978.

[32] Mendel Rosenblum and John K Ousterhout. The design and implemen-
tation of a log-structured file system. ACM Transactions on Computer
Systems (TOCS), 10(1):26–52, 1992.

[33] Michael Stonebraker. The design of the postgres storage system. In
Proceedings of the 13th International Conference on Very Large Data
Bases, VLDB ’87, pages 289–300, San Francisco, CA, USA, 1987. Morgan
Kaufmann Publishers Inc.

[34] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J.
Elmore, Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker.
E-store: Fine-grained elastic partitioning for distributed transaction
processing systems. Proc. VLDB Endow., 8(3):245–256, November 2014.

[35] Erwin Van Eyk, Alexandru Iosup, Simon Seif, and Markus Thömmes.
The SPEC cloud group’s research vision on FaaS and serverless archi-
tectures. In Proceedings of the 2nd International Workshop on Serverless
Computing, pages 1–4. ACM, 2017.

[36] Maarten van Steep and Andrew S. Tanenbaum. Distributed Systems.
CreateSpace independen Publishing Platform, 3.01 edition, 2018.

[37] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz,
Ujval Misra, Alexey Tumanov, and Ion Stoica. Lineage stash: fault tol-
erance off the critical path. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 338–352. ACM, 2019.

[38] Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. Anna:
A kvs for any scale. IEEE Transactions on Knowledge and Data Engi-
neering, 2019.

[39] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An
empirical evaluation of in-memory multi-version concurrency control.
Proc. VLDB Endow., 10(7):781–792, March 2017.

[40] Zhe Wu, Curtis Yu, and Harsha V. Madhyastha. Costlo: Cost-effective
redundancy for lower latency variance on cloud storage services. In
12th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 15), pages 543–557, Oakland, CA, May 2015. USENIX
Association.

15

http://kubernetes.io
http://kubernetes.io
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/

	Abstract
	1 Introduction
	1.1 A Fault-Tolerance Shim

	2 Background and Motivation
	2.1 Read Atomic Isolation
	2.2 Challenges and Motivation

	3 Achieving Atomicity
	3.1 Architecture and API
	3.2 Definitions
	3.3 Preventing Dirty Reads
	3.4 Preventing Fractured Reads
	3.5 Other Guarantees
	3.6 Staleness

	4 Scaling aft
	4.1 Pruning Commit Sets
	4.2 Fault Tolerance
	4.3 Deployment and Autoscaling

	5 Garbage Collection
	5.1 Local Metadata Garbage Collection
	5.2 Global Data Garbage Collection

	6 Evaluation
	6.1 aft Overheads
	6.2 Read Caching & Data Skew
	6.3 Read-Write Ratios
	6.4 Transaction Length
	6.5 Scalability
	6.6 Garbage Collection Overheads
	6.7 Fault Tolerance

	7 Related Work
	8 Conclusion and Future Work
	References

